
SYS TEC electronic GmbH - System House for distributed Automation

System Manual

PLCcore-iMX35

User Manual
Version 1.0

Edition June 2014

Document No.: L-1567e_1

System Manual PLCcore-iMX35

© SYS TEC electronic GmbH 2014 L-1567e_1 Page 1

Status/Changes

Status: released

Date/Version Section Changes Editor

2014/06/03
1.0

All Creation T. Volckmann

System Manual PLCcore-iMX35

© SYS TEC electronic GmbH 2014 L-1567e_1 Page 2

This manual includes descriptions for copyrighted products that are not explicitly indicated as such.

The absence of the trademark () symbol does not infer that a product is not protected. Additionally,
xed patents and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is believed to be entirely reliable.
However, SYS TEC electronic GmbH assumes no responsibility for any inaccuracies. SYS TEC
electronic GmbH neither guarantees nor accepts any liability whatsoever for consequential damages
resulting from the use of this manual or its associated product. SYS TEC electronic GmbH reserves
the right to alter the information contained herein without prior notification and does not accept
responsibility for any damages which might result.

Additionally, SYS TEC electronic GmbH neither guarantees nor assumes any liability for damages
arising from the improper usage or improper installation of the hardware or software. SYS TEC
electronic GmbH further reserves the right to alter the layout and/or design of the hardware without
prior notification and accepts no liability for doing so.

 Copyright 2014 SYS TEC electronic GmbH. All rights – including those of translation, reprint,
broadcast, photomechanical or similar reproduction and storage or processing in computer systems, in
whole or in part – are reserved. No reproduction may occur without the express written consent from
SYS TEC electronic GmbH.

Inform yourselves:

1st Edition June 2014

mailto:info@systec-electronic.com
mailto:support@systec-electronic.com
http://www.systec-electronic.com/

System Manual PLCcore-iMX35

© SYS TEC electronic GmbH 2014 L-1567e_1 Page 3

Table of Contents

1 Introduction ... 5

2 Overview / Where to find what? .. 6

3 Product Description .. 8

4 Development Kit PLCcore-iMX35 ... 11
4.1 Overview .. 11
4.2 Electric commissioning of the Development Kit PLCcore-iMX35 .. 12
4.3 Control elements of the Development Kit PLCcore-iMX35 ... 13
4.4 Optional accessory .. 14

4.4.1 USB-RS232 Adapter Cable .. 14
4.4.2 Driver Development Kit (DDK) .. 14

5 Pinout of the PLCcore-iMX35 .. 15

6 PLC Functionality of the PLCcore-iMX35 ... 18
6.1 Overview .. 18
6.2 System start of the PLCcore-iMX35 .. 18
6.3 Programming the PLCcore-iMX35... 19
6.4 Process image of the PLCcore-iMX35 .. 20

6.4.1 Local In- and Outputs ... 20
6.4.2 In- and outputs of user-specific baseboards ... 20

6.5 Communication interfaces ... 21
6.5.1 Serial interfaces .. 21
6.5.2 CAN interfaces .. 21
6.5.3 Ethernet interfaces .. 21

6.6 Control and display elements .. 22
6.6.1 Run/Stop Switch ... 22
6.6.2 Run-LED (green) .. 22
6.6.3 Error-LED (red) ... 22

6.7 Using CANopen for CAN interfaces .. 23
6.7.1 CAN interface CAN0 ... 24
6.7.2 CAN interface CAN1 ... 24

6.8 Integrated Target Visualization .. 27
6.8.1 LCD and Touchscreen .. 27
6.8.2 Scrollwheel and Matrix Keyboard ... 28
6.8.3 Setting Display Brightness .. 30

6.9 Pulse outputs ... 31
6.9.1 PWM signal generation ... 31
6.9.2 PWM sound generation .. 32

7 Configuration and Administration of the PLCcore-iMX35 .. 33
7.1 System requirements and necessary software tools ... 33
7.2 Activation/Deactivation of Linux Autostart ... 34
7.3 Ethernet configuration of the PLCcore-iMX35 ... 35
7.4 PLC configuration of the PLCcore-iMX35 ... 37

7.4.1 PLC configuration via WEB Frontend ... 37
7.4.2 PLC configuration via control elements of the Development Kit PLCcore-iMX35 .. 39
7.4.3 Setup of the configuration file "plccore-imx35.cfg" ... 40

7.5 Configuration of the A/D converter .. 42
7.6 Boot configuration of the PLCcore-iMX35 ... 43
7.7 Selecting the appropriate firmware version ... 43
7.8 Predefined user accounts .. 45
7.9 Login to the PLCcore-iMX35 ... 46

7.9.1 Login to the command shell .. 46

System Manual PLCcore-iMX35

© SYS TEC electronic GmbH 2014 L-1567e_1 Page 4

7.9.2 Login to the FTP server .. 47
7.10 Adding and deleting user accounts ... 48
7.11 How to change the password for user accounts ... 49
7.12 Setting the system time ... 50
7.13 File system of the PLCcore-iMX35 .. 51
7.14 Calibration of the Touchscreen.. 52

7.14.1 Automatic Test of Touchscreen Calibration .. 52
7.14.2 Manually calibration of the Touchscreen .. 53

7.15 Software update of the PLCcore-iMX35 .. 53
7.15.1 Updating the PLC firmware... 53
7.15.2 How to update the Linux-Image .. 56

8 Adaption of In-/Outputs and Process Image.. 59
8.1 Data exchange via shared process image .. 59

8.1.1 Overview of the shared process image .. 59
8.1.2 API of the shared process image client .. 62
8.1.3 Creating a user-specific client application .. 66
8.1.4 Example for using the shared process image .. 68

8.2 Driver Development Kit (DDK) for the PLCcore-iMX35 ... 72
8.3 Testing the hardware connections .. 74

Index .. 92

System Manual PLCcore-iMX35

© SYS TEC electronic GmbH 2014 L-1567e_1 Page 5

1 Introduction

Thank you that you have decided for the SYS TEC PLCcore-iMX35. This product provides to you an
innovative and high-capacity PLC-kernel. Due to its integrated Target Visualization, high performance
as well as extensive on-board periphery, it is particularly suitable for communication and control units
for HMI applications.

Please take some time to read through this manual carefully. It contains important information about
the commissioning, configuration and programming of the PLCcore-iMX35. It will assist you in getting
familiar with the functional range and usage of the PLCcore-iMX35. This document is complemented
by other manuals, e.g. for the OpenPCS IEC 61131 programming system and the CANopen extension
for IEC 61131-3. Table 3 in section 4.1 shows a listing of relevant manuals for the PLCcore-iMX35.
Please also refer to those complementary documents.

Declaration of Electro Magnetic Conformity for PLCcore-iMX35
(EMC law)

The PLCcore-iMX35 has been designed to be used as vendor part for the integration into devices
(further industrial processing) or as Development Board for laboratory development (hard- and
software development).

After the integration into a device or when changes/extensions are made to this product, the
conformity to EMC-law again must be assessed and certified. Only thereafter products may be
launched onto the market.

The CE-conformity is only valid for the application area described in this document and only under
compliance with the following commissioning instructions! The PLCcore-iMX35 is ESD-sensitive and
may only be unpacked, used and operated by trained personal at ESD-conform work stations.

The PLCcore-iMX35 is a module for the application in automation technology. It features IEC 61131-3
programmability, uses standard CAN-bus and Ethernet network interfaces and a standardized network
protocol. Consequently, development times are short and hardware costs are reasonable. PLC-
functionality is created on-board through a CANopen network layer. Hence, it is not necessary for the
user to create firmware.

http://www.systec-electronic.com/

System Manual PLCcore-iMX35

© SYS TEC electronic GmbH 2014 L-1567e_1 Page 6

2 Overview / Where to find what?

The PLCcore-iMX35 is based on SYS TEC ECUcore-iMX35 hardware and is extended by PLC-
specific functionality (PLC firmware, target visualization). There are different hardware manuals for all
hardware components such as the ECUcore-iMX35 and the PLCcore-iMX35 (the hardware of both
modules is identical), development boards and reference circuitry. Software-sided, the PLCcore-iMX35
is programmed with IEC 61131-3-conform OpenPCS programming environment. There are additional
manuals for OpenPCS that describe the handling of programming tools and SYS TEC-specific
extensions. Those are part of the software package "OpenPCS". Table 1 lists up all relevant manuals
for the PLCcore-iMX35.

Table 1: Overview of relevant manuals for the PLCcore-iMX35

Information about… In which manual?

Basic information about the PLCcore-iMX35
(configuration, administration, process image,
connection assignment, firmware update,
reference designs et cetera)

In this manual

Development of user-specific C/C++ applications
for the ECUcore-iMX35 / PLCcore-iMX35,
VMware-Image of the Linux development system

System Manual ECUcore-iMX35
(Manual no.: L-1569)

Hardware description about the ECUcore-iMX35 /
PLCcore-iMX35, reference designs et cetera

Hardware Manual ECUcore-iMX35
(Manual no.: L-1570)

Development Board for the ECUcore-iMX35 /
PLCcore-iMX35, reference designs et cetera

Hardware Manual Development Board iMX35
(Manual no.: L-1571)

Driver Development Kit (DDK) for the ECUcore-
iMX35

Software Manual Driver Development Kit (DDK)
for ECUcore-iMX35
(Manual no.: L-1572)

Basics about the OpenPCS IEC 61131
programming system

Brief instructions for the programming system
(Entry "OpenPCS Documentation" in the
OpenPCS program group of the start menu)
(Manual no.: L-1005)

Complete description of the OpenPCS IEC 61131
programming system, basics about the PLC
programming according to IEC 61131-3

Online help about the OpenPCS programming
system

Command overview and description of standard
function blocks according to IEC 61131-3

Online help about the OpenPCS programming
system

SYS TEC extension for IEC 61131-3:
- String functions
- UDP function blocks
- SIO function blocks
- FB for RTC, Counter, EEPROM, PWM/PTO

User Manual "SYS TEC-specific extensions for
OpenPCS / IEC 61131-3"
(Manual no.: L-1054)

System Manual PLCcore-iMX35

© SYS TEC electronic GmbH 2014 L-1567e_1 Page 7

CANopen extension for IEC 61131-3
(Network variables, CANopen function blocks)

User Manual "CANopen extension for
IEC 61131-3"
(Manual no.: L-1008)

HMI extension for IEC 61131-3:
- HMI function blocks
- Basics about Spider Control

User Manual "SYS TEC-specific HMI extensions
for OpenPCS / IEC 61131-3"
(Manual no.: L-1321)

Textbook about PLC programming according to
IEC 61131-3

IEC 61131-3: Programming Industrial Automation
Systems
John/Tiegelkamp
Springer-Verlag
ISBN: 3-540-67752-6
(a short version is available as PDF on the
OpenPCS installation CD)

Section 4 of this manual explains the commissioning of the PLCcore-iMX35 based on the
Development Kit for the PLCcore-iMX35.

Section 5 describes the connection assignment of the PLCcore-iMX35.

Section 6 explains details about the application of the PLCcore-iMX35, e.g. the setup of the
process image, the meaning of control elements and it provides basic information
about programming the module. Moreover, information is given about the usage of
CAN interfaces in connection with CANopen.

Section 7 describes details about the configuration of the PLCcore-iMX35, e.g. the
configuration of Ethernet and CAN interfaces, the Linux Autostart procedure as well as
choosing the firmware version. Furthermore, the administration of the PLCcore-
iMX35 is explained, e.g. the login to the system, the user administration and the
execution of software updates.

Section 8 defines the adaptation of in- and outputs as well as the process image and it
covers the data exchange between a PLC program and a user-specific C/C++
application via shared process image.

System Manual PLCcore-iMX35

© SYS TEC electronic GmbH 2014 L-1567e_1 Page 8

3 Product Description

The PLCcore-iMX35 as another innovative product extends the SYS TEC electronic GmbH product
range within the field of control applications. In the form of an insert-ready core module, it provides to
the user a complete and compact PLC. Due to CAN and Ethernet interfaces, the PLCcore-iMX35 is
best suitable to realize custom specific HMI (Human Machine Interface) applications.

Figure 1: Top view of the PLCcore-iMX35

These are some significant features of the PLCcore-iMX35:

 High-performance CPU kernel (ARM 32-Bit ARM1136JF-S, 532 MHz CPU Clock, 740 MIPS)

 128 MByte SDRAM Memory, 128 MByte FLASH Memory

 LCD Controller supports up to 800x600 pixel resolution with 24-bit color depth

 Support for Scrollwheel and 4x4 Matrix keypad

 1x 10/100 Mbps Ethernet LAN interface (with on–board PHY)

 2x CAN 2.0B interface, usable as CANopen Manager (CiA 302-conform)

 3x asynchronous serial ports (UART)

 16 digital inputs, 10 digital outputs (standard configuration, modifiable via DDK)

 Externally usable SPI and I
2
C

 On-board peripherals: RTC, watchdog, power-fail input

 On-board software: Linux, PLC firmware, CANopen Master, HTTP and FTP server
HMI version only: Target Visualization and HMI Function block library

 Programmable in IEC 61131-3 and in C/C++

 Function block libraries for communication (CANopen, Ethernet and UART)

 Support of typical PLC control elements (e.g. Run/Stop Switch, Run-LED, Error-LED)

 Linux-based (other user programs may run in parallel)

 Easy, HTML-based configuration via WEB Browser

 Remote Login via Telnet

 Small dimension (78 x 54 mm)

There are different types of firmware available for the PLCcore-iMX35. They differ regarding in the
Target Visualization and in the protocol used for the communication between Programming PC and
PLCcore-iMX35:

Order number: 3390065/Z4: PLCcore-iMX35/Z4 (CANopen, without Target Visualization)
communication with Programming PC via CANopen Protocol
(Interface CAN0)

System Manual PLCcore-iMX35

© SYS TEC electronic GmbH 2014 L-1567e_1 Page 9

Order number: 3390065/Z5: PLCcore-iMX35/Z5 (Ethernet, without Target Visualization)
communication with Programming PC via UDP Protocol
(Interface ETH0)

Order number: 3390075/Z4: PLCcore-iMX35-HMI/Z4 (CANopen, including Target Visualization)
communication with Programming PC via CANopen Protocol
(Interface CAN0)

Order number: 3390075/Z5: PLCcore-iMX35-HMI/Z5 (Ethernet, including Target Visualization)
communication with Programming PC via UDP Protocol
(Interface ETH0)

Making PLC available as an insert-ready core module with small dimensions reduces effort and costs
significantly for the development of user-specific controls. The PLCcore-iMX35 is also very well
suitable as basic component for custom specific HMI devices as well as an intelligent network node for
decentralized processing of process signals (CANopen and UDP).

The on-board firmware of the PLCcore-iMX35 contains the entire Target Visualization (HMI version
only, Order number 3390075) as well as the PLC runtime environment including CANopen connection
with CANopen master functionality. Thus, the module is able to perform human-machine-
communication as well as control tasks such as linking in- and outputs or converting rule algorithms.
Data and occurrences can be exchanged with other nodes (e.g. superior main controller, I/O slaves
and so forth) via CANopen network, Ethernet (UDP protocol) and serial interfaces (UART). Moreover,
the number of in- and outputs either is locally extendable or decentralized via CANopen devices. For
this purpose, the CANopen-Chip is suitable. It has also been designed as insert-ready core module for
the appliance in user-specific applications.

The PLCcore-iMX35 provides 16 digital inputs (DI0...DI15, 3.3V level), 10 digital outputs (DO0...DO9,
3.3V level) as well as Scrollwheel and 4x4 Matrix Keypad support. This default I/O configuration can
be adapted for specific application requirements by using the Driver Development Kit (SO-
1119).Saving the PLC program in the on-board Flash-Disk of the module allows an automatic restart in
case of power breakdown.

Programming the PLCcore-iMX35 takes place according to IEC 61131-3 using the OpenPCS
programming system of the company infoteam Software GmbH (http://www.infoteam.de). This
programming system has been extended and adjusted for the PLCcore-iMX35 by the company
SYS TEC electronic GmbH. Hence, it is possible to program the PLCcore-iMX35 graphically in
KOP/FUB, AS and CFC or textually in IL or ST. Downloading the PLC program onto the module takes
place via Ethernet or CANopen – depending on the firmware that is used. Addressing in- and outputs
and creating a process image follows the SYS TEC scheme for compact control units. Like all other
SYS TEC controls, the PLCcore-iMX35 supports backward documentation of the PLC program as well
as the debug functionality including watching and setting variables, single cycles, breakpoints and
single steps.

The HMI version of the PLCcore-iMX35 (Order number 3390075) contains an integrated Target
Visualization. That is based on the SpiderControl MicroBrowser by the iniNet Solutions GmbH
(http://www.spidercontrol.net). It enables for displaying of process values from the PLC as well as
forwarding of operator actions to the PLC (e.g. entries via Touchscreen, Srollwheel and matrix
keyboard).

In the standard version of the PLCcore-iMX35 (Order number 3390065) the display is free available for
customer specific GUI applications, based on Qt.

The PLCcore-iMX35 is based on Embedded Linux as operating system. This allows for an execution
of other user-specific programs while PLC firmware is running. If necessary, those other user-specific
programs may interchange data with the PLC program via the process image. More information about
this is provided in section 8.

http://www.infoteam.de/
http://www.spidercontrol.net/

System Manual PLCcore-iMX35

© SYS TEC electronic GmbH 2014 L-1567e_1 Page 10

The Embedded Linux applied to the PLCcore-iMX35 is licensed under GNU General Public License,
version 2. Appendix D contains the license text. All sources of LinuxBSP are included in the software
package SO-1121 ("VMware-Image of the Linux development system for the ECUcore-iMX35"). If you
require the LinuxBSP sources independently from the VMware-Image of the Linux development
system, please contact our support:

The PLC system and the PLC- and C/C++ programs developed by the user are not subject to GNU
General Public License!

mailto:support@systec-electronic.com

System Manual PLCcore-iMX35

© SYS TEC electronic GmbH 2014 L-1567e_1 Page 11

4 Development Kit PLCcore-iMX35

4.1 Overview

The Development Kit PLCcore-iMX35 is a high-capacity, complete package at a particularly favorable
price. Based on a compact PLC with integrated target visualization, it enables the user to develop
own, custom specific HMI devices.

Figure 2: Development Kit PLCcore-iMX35

The Development Kit PLCcore-iMX35 ensures quick and problem-free commissioning of the PLCcore-
iMX35. Therefore, it combines all hard- and software components that are necessary to create own
HMI applications: the core module PLCcore-iMX35, the corresponding Development Board containing
a QVGA LCD Display, I/O periphery and numerous interfaces, the OpenPCS IEC 61131 programming
system, the SpiderControl HMI Editor for the creation of the graphics pages as well as further
accessory. Thus, the Development Kit forms the ideal platform for developing user-specific HMI
applications based on the PLCcore-iMX35. It allows for a cost-efficient introduction into the world of
decentralized automation technology. All components included in the Kit enable in- and output
extensions of the PLCcore-iMX35 through CANopen-I/O-assemblies. Thus, the Development Kit may
also be used for projects that require PLC with network connection.

The Development Kit PLCcore-iMX35 contains the following hardware components:

 PLCcore-iMX35-HMI
 Development Board for the PLCcore-iMX35, incl.:

- 320x240 pixel QVGA LCD Display
- Scrollwheel (on-board)
- 4x4 Matrix Membrane Keypad (external connected)

 12V – 1,5A DC Power adapter
 Ethernet cable
 RS232 cable
 RS485 connector
 CD with programming software, examples, documentation and other tools

The Development Board included in the Kit facilitates quick commissioning of the PLCcore-iMX35 and
simplifies the design of prototypes for user-specific HMI applications based on this module. Among
other equipment, the Development Board comprises different power supply possibilities, a 320x240

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 12

pixel QVGA LCD Display, Ethernet interface, 2 CAN interfaces, 4 push buttons and 4 LED as control
elements for digital in- and outputs and it comprises a Scrollwheel and a connector for a 4x4 Matrix
Keypad. Signals that are available from plug connectors of the PLCcore-iMX35 are linked to pin
header connectors and enable easy connection of own peripheral circuitry. Hence, the Development
Board forms an ideal experimentation and testing platform for the PLCcore-iMX35.

The OpenPCS IEC 61131 programming system included in the Kit serves as software development
platform and as debug environment for the PLCcore-iMX35. Thus, the module can either be
programmed graphically in KOP/FUB, AS and CFC or textually in IL or ST. Downloading the PLC
program onto the module takes place via Ethernet or CANopen – depending on the firmware that is
used. High-capacity debug functionality such as watching and setting variables, single cycles,
breakpoints and single steps simplify the development and commissioning of user software for this
module.

4.2 Electric commissioning of the Development Kit PLCcore-iMX35

A power adapter necessary for running the Development Kit PLCcore-iMX35 as well as Ethernet and
RS232 cables are already included in the Kit delivery. For commissioning the Kit, it is essential to use
at least the power supply connections (X100/X101), COM0 (X701A) and ETH0 (X702). Furthermore,
connection CAN0 (X801A) is recommended. Table 2 provides an overview over the connections of the
Development Kit PLCcore-iMX35.

Table 2: Connections of the Development Kit PLCcore-iMX35

Connection Labeling on the
Development
Board

Remark

Power supply X100 or X101 The power adapter included in the delivery is
intended for direct connection to X101.

ETH0 (Ethernet) X702 This interface serves as communication interface
with the Programming PC and is necessary for the
program download (PLCcore-iMX35-HMI/Z5, order
number 3390075/Z5), besides can be used freely
for the user program.

COM0 (RS232) X701A This interface is used for the configuration of the
unit (e.g. setting the IP-address) and can be used
freely for general operation of the user program.

COM1 (RS232) X701B Interface can be used freely for the user program.

COM2 (RS485) X700 Interface can be used freely for the user program.

CAN0 (CAN) X801A This interface serves as communication interface
with the Programming PC and is necessary for the
program download (PLCcore-iMX35-HMI/Z4, order
number 3390075/Z4), besides can be used freely
for the user program.

CAN1 (CAN) X801B Interface can be used freely for the user program.

Figure 3 shows the positioning of the most important connections of the Development Board for the
PLCcore-iMX35. Instead of using the power adapter included in the Kit, the power supply may
optionally take place via X100 with an external source of 12V/1,5A.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 13

Figure 3: Positioning of most important connections on the Development Board for the PLCcore-iMX35

Advice: Upon commissioning, cables for Ethernet (ETH0, X702) and RS232 (COM0, X701A)

must be connected prior to activating the power supply (X100 / X101).

4.3 Control elements of the Development Kit PLCcore-iMX35

The Development Kit PLCcore-iMX35 allows for easy commissioning of the PLCcore-iMX35. It has
available various control elements to configure the module and to simulate in- and outputs for the
usage of the PLCcore-iMX35 as PLC kernel. In Table 3 control elements of the Development Board
are listed and their meaning is described.

Table 3: Control elements of the Development Board for the PLCcore-iMX35

Control element Name Meaning

Pushbutton 0 S604 Digital Input DI0 (Process Image: %IX0.0)

Pushbutton 1 S605 Digital Input DI1 (Process Image: %IX0.1)

Pushbutton 2 S606 Digital Input DI2 (Process Image: %IX0.2)

Pushbutton 3 S607 Digital Input DI3 (Process Image: %IX0.3)

LED 0 D602 Digital Output DO0 (Process Image: %QX0.0)

LED 1 D603 Digital Output DO1 (Process Image: %QX0.1)

LED 2 D604 Digital Output DO2 (Process Image: %QX0.2)

LED 3 D605 Digital Output DO3 (Process Image: %QX0.3)

Run/Stop Switch S603 Run / Stop to operate the PLC program (see section 6.6.1)

Run-LED D600 Display of activity state of the PLC (see section 6.6.2)

Error-LED D601 Display of error state of the PLC (see section 6.6.3)

Hex-Encoding
Switch

S608/S610 Configuration of node address CAN0 (see section 7.4.2)

DIP-Switch S609 Configuration of bitrate and master mode CAN0 (see section
7.4.2)

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 14

Table 7 in section 6.4.1 provides a complete listing of the process image.

4.4 Optional accessory

4.4.1 USB-RS232 Adapter Cable

The SYS TEC USB-RS232 Adapter Cable (order number 3234000) provides a RS232 interface via an
USB-Port of the PC. Together with a terminal program, it enables the configuration of the PLCcore-
iMX35 from PCs, e.g. laptop computers which do not have RS232 interfaces any more (see section
6.1).

Figure 4: SYS TEC USB-RS232 Adapter Cable

4.4.2 Driver Development Kit (DDK)

The ECUcore-iMX35 Driver Development Kit (order number SO-1119) allows the user to
independently adjust the I/O level to his own baseboard. Section 8.2 provides information about the
Driver Development Kit.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 15

5 Pinout of the PLCcore-iMX35

Connections of the PLCcore-iMX35 are directed to the outside via two female headers that are double-
row and mounted on the bottom of the module (X600A/B, see Figure 5). Appropriate pin header
connectors as correspondent to the PLCcore-iMX35 are available from company “W + P“:

W+P name: SMT Pin Headers, 1.27mm Pitch, Vertical, Double Row - 1.0mm Body
W+P order number: 7072-100-10-00-10-PPST (deliverable in other sizes)

Figure 5: Pinout of the PLCcore-iMX35 - top view

Figure 5 exemplifies the positioning of female headers (X600A/B) on the PLCcore-iMX35. The
complete connection assignment of this module is listed up in Table 4. The additional female header
X600C shown in Figure 5 is reserved for a JTAG interface. It is only equipped on special development
boards. For the usage of the PLCcore-iMX35 as PLC kernel it is without any importance. A detailed
description of all module connectors is located in the Hardware Manual ECUcore-iMX35 (Manual no.:
L-1570). Appendix B includes reference designs for using the PLCcore-iMX35 in customer-specific
applications.

Table 4: Connections of the PLCcore-iMX35, completely, sorted by connection pin

Signal Pin Pin Signal

Signal Pin Pin Signal

GND A01 B01 GND GND C01 D01 2V5_EPHY

/BOOT A02 B02 /MR Eth_Tx- C02 D02 GND

/BOOTSTRAP_1 A03 B03 /RESET_IN Eth_Tx+ C03 D03 Speed

VSTBY A04 B04 /PFI Eth_Rx+ C04 D04 Link/Act

/BOOTSTRAP_0 A05 B05 WDI Eth_Rx- C05 D05 GND

GND A06 B06 /PFO GND C06 D06 GPIO1_6

RXD1 A07 B07 GND GPIO1_0 C07 D07 GPIO1_5

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 16

Signal Pin Pin Signal

Signal Pin Pin Signal

TXD1 A08 B08 RTS2 GPIO1_1 C08 D08 GPIO1_4

RTS1 A09 B09 CTS2 GND C09 D09 GND

CTS1 A10 B10 RTS3 SD2_DATA0 C10 D10 GPIO1_3

GPIO2_12 A11 B11 CTS3 SD2_DATA1 C11 D11 USBOTG_OC

GND A12 B12 GND SD2_DATA2 C12 D12 USBOTG_PWR

TXD2 A13 B13 TXD3 SD2_DATA3 C13 D13 USBPHY1_VBUS

RXD2 A14 B14 RXD3 SD2_CLK C14 D14 SD2_CMD

NVCC_3V3 A15 B15 GPIO1_26 GND C15 D15 GPIO1_31

NVCC_3V3 A16 B16 GPIO2_18 GPIO1_28 C16 D16 GND

GND A17 B17 Unused Unused C17 D17 CAPTURE

USBPHY2_DP A18 B18 Unused GPIO2_12 C18 D18 GPIO1_25

USBPHY2_DM A19 B19 GND GPIO2_13 C19 D19 COMPARE

USBPHY1_UID A20 B20 USBPHY1_DP GPIO2_14 C20 D20 CLKO

Unused A21 B21 USBPHY1_DM GPIO2_15 C21 D21 GPIO2_26

GND A22 B22 GND GPIO2_17 C22 D22 GPIO2_28

I2C2_DAT A23 B23 CAN1_TX GPIO2_25 C23 D23 GND

I2C2_CLK A24 B24 CAN1_RX GND C24 D24 BACKL_EN

GND A25 B25 GPIO1_24 GPIO1_2 C25 D25 GPIO2_31

GPIO3_25 A26 B26 GND LCD_CONTRAST C26 D26 GPIO2_29

GND3_26 A27 B27 /RESET GPIO2_30 C27 D27 GPIO2_19

Unused A28 B28 /PORESET GPIO2_20 C28 D28 GND

/EN_IO3V3 A29 B29 Unused GND C29 D29 GPIO2_21

Unused A30 B30 CAN2_RX GPIO2_22 C30 D30 Unused

GND A31 B31 CAN2_TX LCD_TXout0+ C31 D31 LCD_TXout0-

CSPI1_SS0 A32 B32 GND LCD_TXout1+ C32 D32 LCD_TXout1-

CSPI1_SS2/PWMO A33 B33 CSPI1_SS1 LCD_TXout2+ C33 D33 GND

CSPI1_MOSI A34 B34 CSPI1_MISO LCD_TXout2- C34 D34 LCD_TXoutCLK+

CSPI1_SS3 A35 B35 CSPI1_SCLK GND C35 D35 LCD_TXoutCLK-

Unused A36 B36 Unused LCD_R0 C36 D36 LCD_R1

GND A37 B37 SD1_CLK LCD_R2 C37 D37 LCD_R3

SD1_CMD A38 B38 GND LCD_R4 C38 D38 LCD_R5

SD1_DATA0 A39 B39 SD1_DATA1 LCD_G0 C39 D39 GND

SD1_DATA2 A40 B40 SD1_DATA3 LCD_G1 C40 D40 LCD_G2

MATRIX_C1 A41 B41 MATRIX_C0 GND C41 D41 LCD_G3

MATRIX_C3 A42 B42 MATRIX_C2 LCD_G4 C42 D42 LCD_G5

GND A43 B43 MATRIX_R0 LCD_B0 C43 D43 LCD_B1

MATRIX_R1 A44 B44 GND LCD_B2 C44 D44 LCD_B3

MATRIX_R3 A45 B45 MATRIX_R2 LCD_B4 C45 D45 GND

GPIO1_8 A46 B46 GPIO1_9 LCD_B5 C46 D46 /LVDS_PWD

GPIO1_12 A47 B47 GPIO1_13 GND C47 D47 GPIO1_15

VBAT A48 B48 GPIO1_14 LCD_DEN C48 D48 LCD_DCLK

GND A49 B49 GND LCD_HSYNC C49 D49 LCD_VSYNC

+3V3 A50 B50 +3V3 GND C50 D50 GND

Table 5 is a subset of Table 4 and only includes all in- and outputs of the PLCcore-iMX35 sorted by
their function.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 17

Table 5: Connections of the PLCcore-iMX35, only I/O, sorted by function

Connector I/O-Pin PLC Function 1 PLC Function 2
A=alternative,
S=simultaneous

D27 GPIO2_19 DI0 [Switch0]

C28 GPIO2_20 DI1 [Switch1]

D29 GPIO2_21 DI2 [Switch2]

C30 GPIO2_22 DI3 [Switch3]

B25 GPIO1_24 DI4

D18 GPIO1_25 DI5

B15 GPIO1_26 DI6

D15 GPIO1_31 DI7

D14 GPIO2_0 (SD2_CMD) DI8

A47 GPIO1_12 DI9

B16 GPIO2_18 DI10

B9 GPIO3_13 DI11

A26 GPIO3_25 DI12

A27 GPIO3_26 DI13

D21 GPIO2_26 DI14

C25 GPIO1_2 DI15

D22 GPIO2_28 DO0 [LED0]

D26 GPIO2_29 DO1 [LED1]

C27 GPIO2_30 DO2 [LED2]

D25 GPIO2_31 DO3 [LED3]

C7 GPIO1_0 DO4

C8 GPIO1_1 DO5

D10 GPIO1_3 DO6

D6 GPIO1_6 DO7

C14 GPIO2_1 (SD2_CLK) DO8

C21 GPIO2_15 DO9

B41 MATRIX_C0 MATRIX_C0

A41 MATRIX_C1 MATRIX_C1

B42 MATRIX_C2 MATRIX_C2

A42 MATRIX_C3 MATRIX_C3

B43 MATRIX_R0 MATRIX_R0

A44 MATRIX_R1 MATRIX_R1

B45 MATRIX_R2 MATRIX_R2

A45 MATRIX_R3 MATRIX_R3

D17 CAPTURE Scrollwheel DIR

D19 COMPARE Scrollwheel CLK

C22 GPIO2_17 Scrollwheel Button

A46 GPIO1_8 Error-LED

B46 GPIO1_9 Run-LED

B8 GPIO3_12 (RTS2) R/S-Switch (High: "Run")

Functionality of the Run/Stop Switch for PLC firmware is explained in section 6.6.1. If no Run/Stop
Switch is intended for the usage of the PLCcore-iMX35 on an application-specific baseboard, the
coding for "Run" must be hard-wired at the module connections (also see reference design in
Appendix B).

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 18

6 PLC Functionality of the PLCcore-iMX35

6.1 Overview

The PLCcore-iMX35 realizes a complete Linux-based compact PLC as an insert-ready core ("Core").
There, the PLCcore-iMX35 is based on the hardware ECUcore-iMX35 and extends it by PLC-specific
functionality (PLC firmware, Target Visualization). Both modules, the ECUcore-iMX35 and the
PLCcore-iMX35, use the same Embedded Linux as operating system. Consequently, the configuration
and the C/C++ programming of the PLCcore-iMX35 are almost identical with the ECUcore-iMX35.

6.2 System start of the PLCcore-iMX35

By default, the PLCcore-iMX35 loads all necessary firmware components upon Power-on or Reset
and starts running the PLC program afterwards. Hence, the PLCcore-iMX35 is suitable for the usage
in autarchic control systems. In case of power breakdown, such systems resume the execution of the
PLC program independently and without user intervention. Figure 6 shows the system start in detail:

Power-on / Reset

Start Linux-Bootloader
"U-Boot"

Start Linux
Operating System

Run Boot Script
"/home/etc/autostart"

Start PLC Firmware

Load Module Drivers
(I/O, CAN, RTC, etc.)

Run PLC User Program

Start Servers
(HTTP-Server, FTP-Server)

For more details on how to
deactivate the autarchic Linux
start and to activate the “U-Boot"
command prompt compare
section 7.2.

Details about the start script
"/home/etc/autostart" are
covered in section 7.6.

For detailed information about
PLC programming of the
PLCcore-iMX35 compare section
6.3.

Figure 6: System start of the PLCcore-iMX35

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 19

6.3 Programming the PLCcore-iMX35

The PLCcore-iMX35 is programmed with IEC 61131-3-conform OpenPCS programming environment.
There exist additional manuals about OpenPCS that describe the handling of this programming tool.
Those are part of the software package "OpenPCS". All manuals relevant for the PLCcore-iMX35 are
listed in Table 1.

PLCcore-iMX35 firmware is based on standard firmware for SYS TEC`s compact control units.
Consequently, it shows identical properties like other SYS TEC control systems. This affects
especially the process image setup (see section 6.4) as well as the functionality of control elements
(Hex-Encoding switch, DIP-Switch, Run/Stop Switch, Run-LED, Error-LED).

Depending on the firmware version used, PLCcore-iMX35 firmware provides numerous function blocks
to the user to access communication interfaces. Table 6 specifies the availability of FB communication
classes (SIO, CAN, UDP) for different PLCcore-iMX35 firmware versions. Section 7.7 describes the
selection of the appropriate firmware version.

Table 6: Support of Function Block classes for different types of the PLCcore

Type of
Interface

PLCcore-iMX35/Z3
Art. no:

3390065/Z3
3390075/Z3

PLCcore-iMX35/Z4
Art. no:

3390065/Z4
3390075/Z4

PLCcore-iMX35/Z5
Art. no:

3390065/Z5
3390075/Z5

Remark

CAN - x x FB description see
manual L-1008

UDP - x x FB description see
manual L-1054

SIO x x x FB description see
manual L-1054

HMI x
(only 3390075)

x
(only 3390075)

x
(only 3390075)

FB description see
manual L-1321

Table 25 in Appendix A contains a complete listing of firmware functions and function blocks that are
supported by the PLCcore-iMX35.

Detailed information about using the CAN interfaces in connection with CANopen is provided in
section 6.7.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 20

6.4 Process image of the PLCcore-iMX35

6.4.1 Local In- and Outputs

Compared to other SYS TEC compact control systems, the PLCcore-iMX35 obtains a process image
with identical addresses. All in- and outputs listed in Table 7 are supported by the PLCcore-iMX35.

Table 7: Assignment of in- and outputs to the process image of the PLCcore-iMX35

I/O of the PLCcore-iMX35 Address and Data type in the Process Image

DI0 ... DI7 %IB0.0 as Byte with DI0 … DI7
%IX0.0 … %IX0.7 as single Bit for each input

DI8 ... DI15 %IB1.0 as Byte with DI8 … DI15
%IX1.0 … %IX1.7 as single Bit for each input

AIN0 %IW8.0 15Bit + sign(0 … + 32767)

AIN1 %IW10.0 15Bit + sign(0 … + 32767)

AIN2 %IW12.0 15Bit + sign(0 … + 32767)

AIN3 %IW14.0 15Bit + sign(0 … + 32767)

On-board Temperature Sensor,
see

(1)

%ID72.0 31Bit + sign as 1/10000 °C

DO0 ... DO7 %QB0.0 as Byte with DO0 … DO7
%QX0.0 … %QX0.7 as single Bit for each output

DO8 … DO9 %QB1.0 as Byte with DO8 … DO9
%QX1.0 as single Bit for each output

(1)

 This marked components are only available in the process image, if the Option "Enable
extended I/Os" is activated within the PLC configuration (see section 7.4.1). Alternatively, entry
"EnableExtIo=" can directly be set within section "[ProcImg]" of the configuration file
"/home/plc/plccore-imx35.cfg" (see section 7.4.3). The appropriate configuration setting is
evaluated upon start of the PLC firmware.

In- and outputs of thePLCcore-iMX35 are not negated in the process image. Hence, the H-level at one
input leads to value "1" at the corresponding address in the process image. Contrariwise, value "1" in
the process image leads to an H-level at the appropriate output.

6.4.2 In- and outputs of user-specific baseboards

The connection lines leading towards the outside provides to the user most effective degrees of
freedom for designing the in-/output circuit of the PLCcore-iMX35. Therewith, all in- and outputs of the
PLCcore-iMX35 can be flexibly adjusted to respective requirements. This implicates that the process
image of PLCcore-iMX35 is significantly conditioned by the particular, user-specific in-/output circuit.
Including the software for in-/output components into the process image requires the "Driver
Development Kit for ECUcore-iMX35" (order number SO-1119).

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 21

6.5 Communication interfaces

6.5.1 Serial interfaces

The PLCcore-iMX35 features 3 serial interfaces (COM0 … COM2). COM0 and COM1 are used for
RS-232 mode while COM2 can be used as RS-485 interface. Details about hardware activation are
included in the "Hardware Manual Development Board ECUcore-iMX35" (Manual no.: L-1571).

COM0: Interface COM0 primarily serves as service interface to administer the PLCcore-iMX35.

By default, in boot script "/etc/inittab" it is assigned to the Linux process "getty" and is
used as Linux console to administer the PLCcore-iMX35. Even though interface COM0
may be used from a PLC program via function blocks of type "SIO_Xxx" (see manual
"SYS TEC-specific Extensions for OpenPCS / IEC 61131-3", Manual no.: L-1054), only
signs should be output in this regard. The module tries to interpret and to execute signs
that it receives as Linux commands.

To freely use an interface from a PLC program, boot script "/etc/inittab" must be adjusted
appropriately which is only possible by modifying the Linux image. This requires software
package SO-11120 ("VMware-Image of the Linux Development System for the ECUcore-
iMX35").

COM1/2: Interface COM1 is disposable and support data exchange between the PLCcore-iMX35

and other field devices kept under control of the PLC program.

Interface COM1 may be used from a PLC program via function blocks of type "SIO_Xxx"
(see manual "SYS TEC-specific Extensions for OpenPCS / IEC 61131-3", Manual no.:
L-1054).

6.5.2 CAN interfaces

The PLCcore-iMX35 features 2 CAN interfaces (CAN0 … CAN1). Details about the hardware
activation are included in the "Hardware Manual Development Board ECUcore-iMX35" (Manual no.:
L-1571).

The CAN interfaces allow for data exchange with other devices via network variables and they are
accessible from a PLC program via function blocks of type "CAN_Xxx" (see section 6.7 and "User
Manual CANopen Extension for IEC 61131-3", Manual no.: L-1008).

Section 6.7 provides detailed information about the usage of the CAN interfaces in connection with
CANopen.

6.5.3 Ethernet interfaces

The PLCcore-iMX35 features 1 Ethernet interface (ETH0). Details about the hardware activation are
included in the "Hardware Manual Development Board ECUcore-iMX35" (Manual no.: L-1571).

The Ethernet interface serves as service interface to administer the PLCcore-iMX35 and it enables
data exchange with other devices. The interface is accessible from a PLC program via function blocks
of type "LAN_Xxx" (see manual "SYS TEC-specific Extensions for OpenPCS / IEC 61131-3", Manual
no.: L-1054).

The exemplary PLC program "UdpRemoteCtrl" illustrates the usage of function blocks of type
"LAN_Xxx" within a PLC program.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 22

6.6 Control and display elements

6.6.1 Run/Stop Switch

The Module connection “GPIO3_12 (see Table 5 and reference design in Appendix B) are designed to
connect a Run/Stop Switch. Using this Run/Stop Switch makes it possible to start and interrupt the
execution of the PLC program. Together with start and stop pushbuttons of the OpenPCS
programming environment, the Run/Stop Switch represents a "logical" AND-relation. This means that
the PLC program will not start the execution until the local Run/Stop Switch is positioned to "Run"
AND additionally the start command (cold, warm or hot start) is given by the OpenPCS user interface.
The order hereby is not relevant. A run command given by OpenPCS while at the same time the
Run/Stop Switch is positioned to "Stop" is visible through quick flashing of the Run-LED (green).

6.6.2 Run-LED (green)

The module connection "GPIO1_9" (see Table 5 and reference design in Appendix B) is designed for
connecting a Run-LED. This Run-LED provides information about the activity state of the control
system. The activity state is shown through different modes:

Table 8: Display status of the Run-LED

LED Mode PLC Activity State

Off The PLC is in state "Stop":

 the PLC does not have a valid program,

 the PLC has received a stop command from the OpenPCS programming
environment or

 the execution of the program has been canceled due to an internal error

Quick flashing in
relation 1:8 to
pulse

The PLC is on standby but is not yet executing:

 The PLC has received a start command from the OpenPCS programming
environment but the local Run/Stop Switch is still positioned to "Stop"

Slow flashing in
relation 1:1 to
pulse

The PLC is in state "Run" and executes the PLC program.

6.6.3 Error-LED (red)

Module connection "GPIO1_8 " (see Table 5 and reference design in Appendix B) is designed for
connecting an Error-LED. This Error-LED provides information about the error state of the control
system. The error state is represented through different modes:

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 23

Table 9: Display status of the Error-LED

LED Mode PLC Error State

Off No error has occurred; the PLC is in normal state.

Permanent light A severe error has occurred:

 The PLC was started using an invalid configuration (e.g. CAN node address
0x00) and had to be stopped or

 A severe error occurred during the execution of the program and caused
the PLC to independently stop its state "Run" (division by zero, invalid Array
access, ...), see below

Slow flashing in
relation 1:1 to
pulse

A network error occurred during communication to the programming system; the
execution of a running program is continued. This error state will be reset
independently by the PLC as soon as further communication to the
programming system is successful.

Quick flashing in
relation 1:8 to
pulse

The PLC is on standby, but is not yet running:

 The PLC has received a start command from the OpenPCS programming
environment but the local Run/Stop Switch is positioned to "Stop"

In case of severe system errors such as division by zero of invalid Array access, the control system
passes itself from state "Run" into state "Stop". This is recognizable by the permanent light of the
Error-LED (red). In this case, the error cause is saved by the PLC and is transferred to the computer
and shown upon next power-on.

6.7 Using CANopen for CAN interfaces

The PLCcore-iMX35 features 2 CAN interfaces (CAN0 … CAN1), both are usable as CANopen
Manager (conform to CiA Draft Standard 302). The configuration of this interface (active/inactive, node
number, Bitrate, Master on/off) is described in section 7.4.

The CAN interface allow for data exchange with other devices via network variables and is usable
from a PLC program via function blocks of type "CAN_Xxx". More details are included in "User Manual
CANopen Extension for IEC 61131-3", Manual no.: L-1008.

The CANopen services PDO (Process Data Objects) and SDO (Service Data Objects) are two
separate mechanisms for data exchange between single field bus devices. Process data sent from a
node (PDO) are available as broadcast to interested receivers. PDOs are limited to 1 CAN telegram
and therewith to 8 Byte user data maximum because PDOs are executed as non-receipt broadcast
messages. On the contrary, SDO transfers are based on logical point-to-point connections ("Peer to
Peer") between two nodes and allow the receipted exchange of data packages that may be larger than
8 Bytes. Those data packages are transferred internally via an appropriate amount of CAN telegrams.
Both services are applicable for interface CAN0 as well as for CAN1 of the PLCcore-iMX35.

SDO communication basically takes place via function blocks of type "CAN_SDO_Xxx" (see "User
Manual CANopen Extension for IEC 61131-3", Manual no.: L-1008). Function blocks are also available
for PDOs ("CAN_PDO_Xxx"). Those should only be used for particular cases in order to also activate
non-CANopen-conform devices. For the application of PDO function blocks, the CANopen
configuration must be known in detail. The reason for this is that the PDO function blocks only use 8
Bytes as input/output parameter, but the assignment of those Bytes to process data is subject to the
user.
Instead of PDO function blocks, network variables should mainly be used for PDO-based data
exchange. Network variables represent the easiest way of data exchange with other CANopen nodes.
Accessing network variables within a PLC program takes place in the same way as accessing internal,

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 24

local variables of the PLC. Hence, for PLC programmers it is not of importance if e.g. an input variable
is allocated to a local input of the control or if it represents the input of a decentralized extension
module. The application of network variables is based on the integration of DCF files that are
generated by an appropriate CANopen configurator. On the one hand, DCF files describe
communication parameters of any device (CAN Identifier, etc.) and on the other hand, they allocate
network variables to the Bytes of a CAN telegram (mapping). The application of network variables only
requires basic knowledge about CANopen.

In a CANopen network, exchanging PDOs only takes place in status "OPERATIONAL". If the
PLCcore-iMX35 is not in this status, it does not process PDOs (neither for send-site nor for receive-
site) and consequently, it does not update the content of network variables. The CANopen Manager is
in charge of setting the operational status "OPERATIONAL", "PRE-OPERATIONAL" etc. (mostly also
called "CANopen Master"). In typical CANopen networks, a programmable node in the form of a PLC
is used as CANopen-Manager. The PLCcore-iMX35 is optionally able to take over tasks of the
CANopen Manager. How the Manager is activated is described in section 7.4.

As CANopen Manager, the PLCcore-iMX35 is able to parameterize the CANopen I/O devices
("CANopen-Slaves") that are connected to the CAN bus. Therefore, upon system start via SDO it
transfers DCF files generated by the CANopen configurator to the respective nodes.

6.7.1 CAN interface CAN0

Interface CAN0 features a dynamic object dictionary. This implicates that after activating the PLC, the
interface does not provide communication objects for data exchange with other devices. After
downloading a PLC program (or its reload from the non-volatile storage after power-on), the required
communication objects are dynamically generated according to the DCF file which is integrated in the
PLC project. Thus, CAN interface CAN0 is extremely flexible and also applicable for larger amount of
data.

For the PLC program, all network variables are declared as "VAR_EXTERNAL" according to
IEC61131-3. Hence, they are marked as "outside of the control“, e.g.:

VAR_EXTERNAL

 NetVar1 : BYTE ;

 NetVar2 : UINT ;

END_VAR

A detailed procedure about the integration of DCF files into the PLC project and about the declaration
of network variables is provided in manual "User Manual CANopen Extension for IEC 61131-3"
(Manual no.: L-1008).

When using CAN interface CAN0 it must be paid attention that the generation of required objects
takes place upon each system start. This is due to the dynamic object directory. "Design instructions"
are included in the DCF file that is integrated in the PLC project. Hence, changes to the
configuration can only be made by modifying the DCF file. This implies that after the network
configuration is changed (modification of DCF file), the PLC project must again be translated and
loaded onto the PLCcore-iMX35.

6.7.2 CAN interface CAN1

On the contrary to interface CAN0, interface CAN1 is provided as static object dictionary. This means
that the amount of network variables (communication objects) and the amount of PDOs available are
both strongly specified. During runtime, the configuration of PDOs is modifiable. This implies that
communication parameters used (CAN Identifier, etc.) and the allocation of network variables to each
Byte of a CAN telegram (mapping), can be set and modified by the user. Thus, only the amount of
objects (amount of network variables and PDOs) is strongly specified in the static object dictionary.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 25

Consequently, application and characteristics of objects can be modified during runtime. For this
reason, at interface CAN1 the PLCcore-iMX35 acts as a CANopen I/O device.

All network variables of the PLC program are available through the marker section of the process
image. Therefore, 252 Bytes are usable as input variables and also 252 Bytes as output variables. To
enable any data exchange with other CANopen I/O devices, the section of static network variables is
mapped to different data types in the object dictionary (BYTE, SINT, WORD, INT, DWORD, DINT).
Variables of the different data types are located within the same memory area which means that all
variables represent the same physical storage location. Hence, a WORD variable interferes with 2
BYTE variables, a DWORD variable with 2 WORD or 4 BYTE variables. Figure 7 exemplifies the
positioning of network variables for CAN1 within the marker section.

%MB
7.0

(Byte7)

%MB
6.0

(Byte6)

%MB
5.0

(Byte5)

%MB
4.0

(Byte4)

%MB
3.0

(Byte3)

%MB
2.0

(Byte2)

%MB
1.0

(Byte1)

%MB
0.0

(Byte0)

%MW
6.0

(Word3)

%MW
4.0

(Word2)

%MW
2.0

(Word1)

%MW
0.0

(Word0)

%MD
4.0

(Dw ord1)

%MD
0.0

(Dw ord0)

%MB
251.0

(Byte251)

%MB
250.0

(Byte250)

%MB
249.0

(Byte249)

%MB
248.0

(Byte248)

%MB
247.0

(Byte247)

%MB
246.0

(Byte246)

%MB
245.0

(Byte245)

%MB
244.0

(Byte244)

%MW
250.0

(Word125)

%MW
248.0

(Word124)

%MW
246.0

(Word123)

%MW
244.0

(Word122)

%MD
248.0

(Dw ord62)

%MD
244.0

(Dw ord61)

BYTE /
SINT, USINT

WORD /
INT, UINT

DWORD /
DINT, UDINT

...

CAN1 Input Variables

%MB
263.0
(Byte7)

%MB
262.0
(Byte6)

%MB
261.0
(Byte5)

%MB
260.0
(Byte4)

%MB
259.0
(Byte3)

%MB
258.0
(Byte2)

%MB
257.0
(Byte1)

%MB
256.0
(Byte0)

%MW
262.0
(Word3)

%MW
260.0
(Word2)

%MW
258.0
(Word1)

%MW
256.0
(Word0)

%MD
260.0

(Dw ord1)

%MD
265.0

(Dw ord0)

%MB
507.0

(Byte251)

%MB
506.0

(Byte250)

%MB
505.0

(Byte249)

%MB
504.0

(Byte248)

%MB
503.0

(Byte247)

%MB
502.0

(Byte246)

%MB
501.0

(Byte245)

%MB
500.0

(Byte244)

%MW
506.0

(Word125)

%MW
504.0

(Word124)

%MW
502.0

(Word123)

%MW
500.0

(Word122)

%MD
504.0

(Dw ord62)

%MD
500.0

(Dw ord61)

BYTE /
SINT, USINT

WORD /
INT, UINT

DWORD /
DINT, UDINT

...

CAN1 Output Variables

CAN1
IN0

CAN1
IN1

CAN1
IN2

CAN1
IN3

CAN1
IN4

CAN1
IN5

CAN1
IN6

CAN1
IN7

CAN1
IN244

CAN1
IN245

CAN1
IN246

CAN1
IN247

CAN1
IN248

CAN1
IN249

CAN1
IN250

CAN1
IN251

CAN1
OUT0

CAN1
OUT1

CAN1
OUT2

CAN1
OUT3

CAN1
OUT4

CAN1
OUT5

CAN1
OUT6

CAN1
OUT7

CAN1
OUT244

CAN1
OUT245

CAN1
OUT246

CAN1
OUT247

CAN1
OUT248

CAN1
OUT249

CAN1
OUT250

CAN1
OUT251

...

...

Figure 7: Positioning of network variables for CAN1 within the marker section

Table 10 shows the representation of network variables through appropriate inputs in the object
dictionary of interface CAN1.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 26

Table 10: Representation of network variables for CAN1 by entries in the object dictionary

OD section OD variable /
EDS input

Data type CANopen Data type IEC 61131-3

Inputs (inputs for the PLCcore-5484)

Index 2000H
Sub 1 … 252

CAN1InByte0 …
CAN1InByte251

Unsigned8 BYTE, USINT

Index 2001H
Sub 1 … 252

CAN1InSInt0 …
CAN1InSInt251

Integer8 SINT

Index 2010H
Sub 1 … 126

CAN1InWord0 …
CAN1InWord125

Unsigned16 WORD, UINT

Index 2011H
Sub 1 … 126

CAN1InInt0 …
CAN1InInt125

Integer16 INT

Index 2020H
Sub 1 … 63

CAN1InDword0 …
CAN1InDword62

Unsigned32 DWORD, UDINT

Index 2021H
Sub 1 … 63

CAN1InDInt0 …
CAN1InDInt62

Integer32 DINT

Outputs (outputs for the PLCcore-5484)

Index 2030H
Sub 1 … 252

CAN1OutByte0 …
CAN1OutByte251

Unsigned8 BYTE, USINT

Index 2031H
Sub 1 … 252

CAN1OutSInt0 …
CAN1OutSInt251

Integer8 SINT

Index 2040H
Sub 1 … 126

CAN1OutWord0 …
CAN1OutWord125

Unsigned16 WORD, UINT

Index 2041H
Sub 1 … 126

CAN1OutInt0 …
CAN1OutInt125

Integer16 INT

Index 2050H
Sub 1 … 63

CAN1OutDword0 …
CAN1OutDword62

Unsigned32 DWORD, UDINT

Index 2051H
Sub 1 … 63

CAN1OutDInt0 …
CAN1OutDInt62

Integer32 DINT

The object dictionary of interface CAN1 in total has available 16 TPDO and 16 RPDO. The first 4
TPDO and RPDO are preconfigured and activated according to the Predefined Connection Set. The
first 32 Byte of input and output variables are mapped to those PDOs. Table 11 in detail lists all
preconfigured PDOs for interface CAN1.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 27

Table 11: Preconfigured PDOs for interface CAN1

PDO CAN-ID Data

1. RPDO 0x200 + NodeID %MB0.0 … %MB7.0

2. RPDO 0x300 + NodeID %MB8.0 … %MB15.0

3. RPDO 0x400 + NodeID %MB16.0 … %MB23.0

4. RPDO 0x500 + NodeID %MB24.0 … %MB31.0

1. TPDO 0x180 + NodeID %MB256.0 … %MB263.0

2. TPDO 0x280 + NodeID %MB264.0 … %MB271.0

3. TPDO 0x380 + NodeID %MB272.0 … %MB279.0

4. TPDO 0x480 + NodeID %MB280.0 … %MB287.0

Due to limitation to 16 TPDO and 16 RPDO, only 256 Bytes (2 * 16PDO * 8Byte/PDO) of total
504 Bytes for network variables in the marker section (2 252Bytes) can be transferred via PDO.
Irrespective of that it is possible to access all variables via SDO.

The configuration (mapping, CAN Identifier etc.) of interface CAN1 typically takes place via an external
Configuration Manager that parameterizes the object dictionary on the basis of a DCF file created by
the CANopen configurator. By using default object inputs 1010H und 1011H, the PLCcore-iMX35
supports the persistent storage and reload of a backed configuration.

Alternatively, the configuration (mapping, CAN Identifier etc.) of the static object dictionary for interface
CAN1 can take place from the PLC program by using SDO function blocks. Therefore, inputs
NETNUMBER and DEVICE must be used as follows:

NETNUMBER := 1; (* Interface CAN1 *)

DEVICE := 0; (* local Node *)

The PLC program example "ConfigCAN1" exemplifies the configuration of interface CAN0 through a
PLC program by using function blocks of type "CAN_SDO_Xxx".

6.8 Integrated Target Visualization

The PLCcore-iMX35-HMI (Order number 3390075 only) represents a Compact PLC with integrated
Target Visualization and thereby optimal for generating user-specific HMI (Human Machine Interface)
applications. The integrated Target Visualization of the PLCcore-iMX35 is based on the SpiderControl
MicroBrowser by the iniNet Solutions GmbH (http://www.spidercontrol.net). It allows for displaying
process values from the PLC as well as forwarding of user actions to the PLC (e.g. entries via
Touchscreen, Scrollwheel and Matrix keyboard). The creation of pages shown on the display occurs
through the SpiderControl PLC Editor, which is installed as additional component together with the
programming system OpenPCS.

6.8.1 LCD and Touchscreen

The data exchange between the Target Visualization and the PLC-Program occurs through variables
of the PLC-program. It is therewith for example possible to exchange process information in both
directions (passing of process variable to display from the PLC to the visualization, passing of a
parameter that has been entered into the process visualization to the PLC). Operator events may also
be used, e.g. pressing a special button to change values of variables in the PLC-program (e.g. when
pressing a button the value of the linked variable changes from 0 to 1). The necessary steps for the

http://www.spidercontrol.net/

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 28

creation of visualization pages with the SpiderControl PLC Editor as well as linking of graphical
elements with variables of the PLC-program is described by the manual "SYS TEC specific HMI
extensions for OpenPCS / IEC 61131-3" (Manual-No.: L-1231).

The Touchscreen works directly with the Target Visualization of the PLCcore-iMX35-HMI, i.e. touch
events are processed directly from the SpiderControl MicroBrowser. Forwarding of Touch-Events to
the PLC-program is not intended, as a purposefull analysis of those data (X- and Y-coordinate, contact
pressure) is impossible anyway.

Touchscreen and touch controller have to be adjusted – that means calibrated – to another before its
first use. Without a calibration, the Touchscreen works extremely imprecise which normally make a
correct operation impossible. When booting the PLC system, the device firmware can check whether
the required calibration of the Touchscreen has been undertaken. If not, the appropriate calibration
program is executed before starting the PLC firmware. This automatic test can be enabled or disabled
as needed by means of the particular configuration settings of the modules. If necessary, the
Touchscreen can be also recalibrated anytime. Details are described in section 7.14.

6.8.2 Scrollwheel and Matrix Keyboard

The module connectors "MATRIX_C0 … MATRIX_C3" and “MATRIX_R0 … MATRIX_R3” are
intended for a connection of a 4x4 matrix keyboard. Furthermore, the module connectors "SW_DIR",
"SW_S" and "SW_CLK" allow for the connection of a Scrollwheel with Push-Button (see Table 5 and
reference design in Appendix B). Figure 8 shows the connection of the foil keyboard, contained in the
Development Kit PLCcore-iMX35, to the development board.

Figure 8: Connection of the Foil Keyboard to the Development Board

The standard configuration of the foil keyboard contained in the Development Kit PLCcore-iMX35 as
well as the key allocation for the Scrollwheel is shown in Figure 9. Labeling cards in 1:1 scale with the
standard configuration for insertion into the foil keyboard, is shown in Figure 43 in Appendix C.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 29

F1

Key01

F2

Key02

F3

Key03

F4

Key04

F5

Key05

F6

Key06

F7

Key07

F8

Key08

F9

Key12

F10

Key16

Key13

Key14

Key15

ESC

Key09

Key10

Enter

Key11

Enter

Push Button

Shift + TAB

CounterClockwise

TAB

Clockwise

4x4 Matrix Keypad

Scroll Wheel

Figure 9: Standard Configuration of Foil Keyboard and Scrollwheel

With the help of both firmware function blocks HMI_REG_KEY_FUNCTION_TAB and
HMI_SEL_KEY_FUNCTION_TAB up to four keyboard tables can be defined and enabled as needed
by means of the PLC program (for details on those function blocks see "SYS TEC specific HMI
Extensions for OpenPCS / IEC 61131-3", Manual-No.: L-1231). Besides the 16 entries for the keys of
the 4x4 matrix keyboard, the keyboard tables contain another 3 entries for the Scrollwheel (Rotating
left, Rotating right and Push-Button), so that its functions can be adjusted flexibly as well. Table 12
represents the structure and standard configuration of the keyboard table through the PLC firmware.

Note: For the foil keyboard contained in the Development Kit PLCcore-iMX35, its labeling can

be adjusted flexibly to the existent keyboard assignment by exchanging the labeling cards
inserted on the backside. The labeling cards with dimensions in Appendix C (Figure 40)
can be used as sample.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 30

Table 12: Standard Keyboard Table of the PLC firmware

Table Index Device Function Configuration

0 Matrix Keypad Key01 'FKEY_1'

1 Key02 'FKEY_2'

2 Key03 'FKEY_3'

3 Key04 'FKEY_4'

4 Key05 'FKEY_5'

5 Key06 'FKEY_6'

6 Key07 'FKEY_7'

7 Key08 'FKEY_8'

8 Key09 'ESC'

9 Key10 'UP'

10 Key11 'ENTER'

11 Key12 'FKEY_9'

12 Key13 'LEFT'

13 Key14 'DOWN'

14 Key15 'RIGHT'

15 Key16 'FKEY_10'

16 Scrollwheel Push Button 'ENTER'

17 Clockwise 'TAB'

18 CounterClockwise 'SHIFT-TAB'

The events generated by the matrix keyboard and the Scrollwheel are sent directly to the
SpiderControl MicroBrowser and processed there as well. Alternatively, those events can be
redirected to and evaluated by the PLC-program either selectively for single control elements only or
globally for all input-events. The firmware function blocks "HMI_REG_EDIT_CONTROL_TAB" as well
as "HMI_SEL_EVENT_HANDLER" and "HMI_GET_INPUT_EVENT" needed for it, are described in
the manual "SYS TEC specific HMI Extensions for OpenPCS / IEC 61131-3" (Manual-No.: L-1231).

6.8.3 Setting Display Brightness

Control of display brightness on the PLCcore-iMX35 occurs via read- and write accesses on items of
the display driver in the file system of the PLC. All items of the display driver are contained in folder:

/sys/devices/platform/mx3_sdc_fb/backlight/mx3fb-bl

Here, the following driver items are relevant:

bl_power: 1 = Display is pushed with maximum brightness, independent from the

value "brightness"
 0 = Display brightness is defined through the value entered in "brightness"

brightness: Brightness value (1=min ... 255=max), only operative for "bl_power = 0"'

actual_brightness: currently effective brightness value

bl_power := 0 -> copy of the value "brightness"
bl_power := 1 -> constant at 0

max_brightness: Constant for maximum brightness value (= 255)

Function block HMI_SET_DISPLAY_BRIGHTNESS allows for the control of display brightness
through the PLC program. Details regarding this function block are described in the manual "SYS TEC
specific HMI-extensions for OpenPCS / IEC 61131-3", Manual-No.: L-1321).

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 31

Function block HMI_SET_DISPLAY_BRIGHTNESS supports two alternative operation methods. As
standard, the block writes the brightness value passed on input BRIGHTNESS directly to the driver
item "/sys/devices/platform/mx3_sdc_fb/backlight/mx3fb-bl/brightness" in the file system of the PLC.
As the value is thereby passed unchanged to the driver, BRIGHTNESS := 1 represents the minimum
and BRIGHTNESS := 255 the maximum value for the brightness (see above).

For the connection of special displays, alternatively it might be needed to replace the standard driver
by a dedicated driver for the respective display type. In order to be able to use the function block
HMI_SET_DISPLAY_BRIGHTNESS also in this case, the PLC firmware can be configured using an
external shell script for the setting of display brightness. The script to be called has to be defined into
the configuration file "/home/plc/bin/plccore-imx35.cfg" (Entry "CmdSetDispBr=" in section "[Visu]",
see section 7.4.3):

[Visu]

CmdSetDispBr=<script_name>

Besides the PLC firmware, the shell script "set_disp_br.sh", which can be used as template, is
contained in directory /home/plc/bin". To activate this script, the configuration file "plccore-imx.cfg"
has to be adapted as follows:

[Visu]

CmdSetDispBr=./set_disp_br.sh

Besides the script "set_disp_br.sh" contained in the delivery, any other script can be used. Its path
must be specified either absolutely or relatively to folder "/home/plc/bin".

The brightness value indicated on input BRIGHTNESS of the function block
HMI_SET_DISPLAY_BRIGHTNESS is passed to the script on its calling as parameter "$1". The
standard implementation of the script writes this as "$1" passed brightness value directly to the driver
input "/sys/devices/platform/mx3_sdc_fb/backlight/mx3fb-bl/brightness" and therewith functionally
corresponds to the internal implementation of the function block within the PLC firmware:

echo $1 > /sys/devices/platform/mx3_sdc_fb/backlight/mx3fb-bl/brightness

After deletion or finishing commenting of the input "CmdSetDispBr=", the PLC firmware again starts
using the internal standard implementation of function block HMI_SET_DISPLAY_BRIGHTNESS.

Note: Setting display brightness with the help of HMI_SET_DISPLAY_BRIGHTNESS is

only possible if the driver item "bl_power" is set to 0 (see above).

6.9 Pulse outputs

To release PWM signal sequences, the PLCcore-iMX35 features one pulse output (PWMO). Prior to
its usage, all pulse outputs must be parameterized using function block "PTO_PWM" (see manual
"SYS TEC-specific Extensions for OpenPCS / IEC 61131 3", Manual no.: L 1054).

6.9.1 PWM signal generation

After the impulse generator is started, it takes over the control of respective output. If the generator is
deactivated, the level of the respective output signal depends on the latest generated output signal.
The level of the output signal remains high if the pulse generator was deactivated on high level. Vice
versa the output level remains low if the generated output was low. Table 13 lists the allocations
between impulse channels and outputs.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 32

Table 13: Allocation between impulse channels and outputs

Impulse channel Impulse output

P0 PWMO

The pulse generator has a 16 bit counter. The maximum cycle time is 65 ms (16 Hz) and the lowest
cycle time is 100 us (10 kHz).

6.9.2 PWM sound generation

The PLCcore-iMX35 has one pulse output which is optimized for sound generation. Hence, the
"PTO_PWM" function block can be also used to generate sounds using the on-board beeper of the
Development Board.

To generate accurate sounds, a duty cycle of 50% is required. That means the "PTO_PWM" function
block must be called with a pulse length of 50% of the cycle time.

The following figure shows an example on how to generate sounds using "PTO_PWM" in OpenPCS.

Figure 10: Generate sounds using "PTO_PWM" function block

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 33

7 Configuration and Administration of the PLCcore-iMX35

7.1 System requirements and necessary software tools

The administration of the PLCcore-iMX35 requires any Windows or Linux computer that has available
an Ethernet interface and a serial interface (RS232). As alternative solution to the on-board serial
interface, SYS TEC offers a USB-RS232 Adapter Cable (order number 3234000, see section 4.4.1)
that provides an appropriate RS232 interface via USB port.

All examples referred to in this manual are based on an administration of the PLCcore-iMX35 using a
Windows computer. Procedures using a Linux computer would be analogous.

To administrate the PLCcore-iMX35 the following software tools are necessary:

Terminal program A Terminal program allows the communication with the command shell of

the PLCcore-iMX35 via a serial RS232 connection to COM0 of the
PLCcore-iMX35. This is required for the Ethernet configuration of the
PLCcore-iMX35 as described in section 7.3. After completing the Ethernet
configuration, all further commands can either be entered in the Terminal
program or alternatively in a Telnet client (see below).

Suitable as Terminal program would be "HyperTerminal" which is included in
the Windows delivery or "TeraTerm" which is available as Open Source and
meets higher demands (downloadable from: http://ttssh2.sourceforge.jp).

Telnet client Telnet-Client allows the communication with command shell of the

PLCcore-iMX35 via Ethernet connection to ETH0 of the PLCcore-iMX35.
Using Telnet clients requires a completed Ethernet configuration of the
PLCcore-iMX35 according to section 7.3. As alternative solution to Telnet
client, all commands can be edited via a Terminal program (to COM0 of the
PLCcore-iMX35).

Suitable as Telnet client would be "Telnet" which is included in the Windows
delivery or "TeraTerm" which can also be used as Terminal program (see
above).

FTP client An FTP client allows for file exchange between the PLCcore-iMX35 (ETH0)

and the computer. This allows for example editing configuration files by
transferring those from the PLCcore-iMX35 onto the computer where they
can be edited and get transferred back to the PLCcore-iMX35. Downloading
files onto the PLCcore-iMX35 is also necessary to update the PLC
firmware. (Advice: The update of PLC firmware is not identical with the
update of the PLC user program. The PLC program is directly transferred to
the module from the OpenPCS programming environment. No additional
software is needed for that.)

Suitable as FTP client would be "WinSCP" which is available as Open
Source (download from: http://winscp.net). It only consists of one EXE file
that needs no installation and can be booted immediately. Furthermore,
freeware "Core FTP LE" (downloadable from: http://www.coreftp.com) or
"Total Commander" (integrated in the file manager) are suitable as FTP
client.

http://ttssh2.sourceforge.jp/
http://winscp.net/
http://www.coreftp.com/

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 34

TFTP server The TFTP server is necessary to update the Linux-Image on the PLCcore-
iMX35. Freeware "TFTPD32" (download from: http://tftpd32.jounin.net) is
suitable as TFTP server. It only consists of one EXE file that needs no
installation and can be booted immediately.

For programs that communicate via Ethernet interface, such as FTP client or TFTP server, it must be
paid attention to that rights in the Windows-Firewall are released. Usually Firewalls signal when a
program seeks access to the network and asks if this access should be permitted or denied. In this
case access is to be permitted.

7.2 Activation/Deactivation of Linux Autostart

During standard operation mode, the bootloader "U-Boot" automatically starts the Linux operating
system of the module after Reset (or Power-on). Afterwards, the operating system loads all further
software components and controls the PLC program execution (see section 6.1). For service
purposes, such as configuring the Ethernet interface (see section 7.3) or updating the Linux-Image
(see section 7.15.2), it is necessary to disable this Autostart mode and to switch to "U-Boot" command
prompt instead (configuration mode).

The automatic boot of Linux operating system is connected with the simultaneous compliance with
various conditions ("AND relation"). Consequently, for disabling Linux Autostart, it is sufficient to
simply not comply with one of the conditions.

Table 14 lists up all conditions that are verified by the bootloader “U-Boot”. All of them must be
complied with to start an Autostart for the Linux-Image.

Table 14: Conditions for booting Linux

No. Condition Remark

1 Connection "/BOOT" = High
(pushbutton S602 on the
Development Board not
pressed)

The Linux Autostart is released only if the signal “/BOOT”
is at H-level (“/BOOT” is not active).

The position of connection "/BOOT" on the module pin
connector is defined in the Hardware Manual PLCcore-
iMX35 (Manual no.: L-1570).

2 No abort of Autostart via COM0
of the PLCcore-iMX35

If the conditions above are met, "U-Boot" checks the
serial interface COM0 of the PLCcore-iMX35 for about 1
second after Reset regarding the reception of SPACE
signals (ASCII 20H). If such a signal is received within
that time, "U-Boot" will disable the Linux Autostart and
will activate its own command prompt instead.

http://tftpd32.jounin.net/

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 35

According to Table 14, the Linux boot is disabled after Reset (e.g. pushbutton S601 on the
Development Board) and the "U-Boot" command prompt is activated instead if the following
conditions occur:

(1) /BOOT = "Low" Development Board: "/BOOT" = pushbutton S602

 - OR -

(2) Reception of a SPACE signal (ASCII 20H) within 1 second after Reset

After activating the Reset pushbutton (e.g. pushbutton S601 on the Development Board), the "U-Boot"
command prompt answers.

Communicating with the bootloader "U-Boot" only takes place via the serial interface COM0 of the
PLCcore-iMX35. As receiver on the computer one of the terminal programs must be started (e.g.
HyperTerminal or TeraTerm, see section 7.1) and must be configured as follows (see Figure 11):

 115200 Baud

 8 Data bit

 1 Stop bit

 no parity

 no flow control

Figure 11: Terminal configuration using the example of "TeraTerm"

7.3 Ethernet configuration of the PLCcore-iMX35

The main Ethernet configuration of the PLCcore-iMX35 takes place within the bootloader "U-Boot" and
is taken on for all software components (Linux, PLC firmware, HTTP server etc.). The Ethernet
configuration is carried out via the serial interface COM0. Therefore, the "U-Boot" command
prompt must be activated as described in section 7.2. Table 15 lists up "U-Boot" commands
necessary for the Ethernet configuration of the PLCcore-iMX35.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 36

Table 15: "U-Boot" configuration commands of the PLCcore-iMX35

Configuration Command Remark

MAC address setenv ethaddr
<xx:xx:xx:xx:xx:xx>

The MAC address worldwide is a clear
identification of the module and is assigned by
the producer. It should not be modified by
the user.

IP address setenv ipaddr
<xxx.xxx.xxx.xxx>

This command sets the local IP address of the
PLCcore-iMX35. The IP address is to be
defined by the network administrator.

Network mask setenv netmask
<xxx.xxx.xxx.xxx>

This command sets the network mask of the
PLCcore-iMX35. The network mask is to be
defined by the network administrator.

Gateway address setenv gatewayip
<xxx.xxx.xxx.xxx>

This command defines the IP address of the
gateway which is to be used by the PLCcore-
iMX35. The gateway address is set by the
network administrator.

Advice: If PLCcore-iMX35 and Programming
PC are located within the same sub-net,
defining the gateway address may be skipped
and value "0.0.0.0" may be used instead.

Saving the
configuration

saveenv This command saves active configurations in
the flash of the PLCcore-iMX35.

Modified configurations may be verified again by entering "printenv" in the "U-Boot" command prompt.
Active configurations are permanently saved in the Flash of the PLCcore-iMX35 by command

saveenv

Modifications are adopted upon next Reset of the PLCcore-iMX35.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 37

Figure 12: Ethernet configuration of the PLCcore-iMX35

After the configuration is finished and according to section 7.2, all conditions for a Linux
Autostart must be re-established.

Upon Reset (e.g. pushbutton S601 on the Development Board) the module starts using the active
configurations.

Advice: After the configuration is finished, the serial connection between PC and PLCcore-iMX35

is no longer necessary.

7.4 PLC configuration of the PLCcore-iMX35

7.4.1 PLC configuration via WEB Frontend

After finishing the Ethernet configuration (see section 7.3), all further adjustments can take place via
the integrated WEB Frontend of the PLCcore-iMX35. For the application of the PLCcore-iMX35 using
the Development Kit, basic configurations may also be set via local control elements (see section
7.4.2).

To configure the PLCcore-iMX35 via WEB Frontend it needs a WEB-Browser on the PC (e.g.
Microsoft Internet Explorer, Mozilla Firefox etc.). To call the configuration page, prefix "http://" must be
entered into the address bar of the WEB-Browser prior to entering the IP address of the PLCcore-

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 38

iMX35 as set in section 7.2, e.g. "http://192.168.10.248". Figure 13 exemplifies calling the PLCcore-
iMX35 configuration page in the WEB-Browser.

The standard setting (factory setting) requires a user login to configure the PLCcore-iMX35 via WEB
Frontend. This is to prevent unauthorized access. Therefore, user name and password must be
entered (see Figure 13). On delivery of the module, the following user account is preconfigured (see
section 7.8):

User: PlcAdmin
Password: Plc123

Figure 13: User login dialog of the WEB Frontend

All configuration adjustments for the PLCcore-iMX35 are based on dialogs. They are adopted into the
file "/home/plc/bin/plccore-imx35.cfg" of the PLCcore-iMX35 by activating the pushbutton "Save
Configuration" (also compare section 7.4.3). After activating Reset (e.g. pushbutton S601 on the
Development Board), the PLCcore-iMX35 starts automatically using the active configuration. Figure 14
shows the configuration of the PLCcore-iMX35 via WEB Frontend.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 39

Figure 14: PLC configuration via WEB Frontend

If "DIP/Hex-Switch" is chosen as Enable State of Interface CAN0, the configuration of this interface
takes place via local control elements of the Development Kit PLCcore-iMX35 (see section 7.4.2).

The standard setting (factory setting) of the PLCcore-iMX35 requires a user login to access the WEB-
Frontend. Therefore, only the user name indicated in configuration file "/home/plc/bin/plccore-
imx35.cfg" is valid (entry "User=" in section "[Login]", see section 7.4.3). Procedures to modify the
user login password are described in section 7.11. To allow module configuration to another user, an
appropriate user account is to be opened as described in section 7.10. Afterwards, the new user name
must be entered into the configuration file "/home/plc/bin/plccore-imx35.cfg". Limiting the user login
to one user account is cancelled by deleting the entry "User=" in section "[Login]" (see 7.4.3). Thus,
any user account may be used to configure the module. By deactivating control box "This
configuration requires a Login" in the field "User Authorization" of the configuration page (see Figure
14) free access to the module configuration is made available without previous user login.

7.4.2 PLC configuration via control elements of the Development Kit PLCcore-iMX35

The configuration via control elements of the PLCcore-iMX35 Development Board is preset upon
delivery of the Development Kit PLCcore-iMX35. This allows for an easy commissioning of the
module by using CAN interface CAN0. Due to a limited number of switch elements, the initial setting of
CAN0 is restricted. Using interface CAN1 requires a configuration via WEB-Frontend as described in
section 7.4.1. This allows for other adjustments as well.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 40

Advice: Configuring interface CAN0 is only possible via local control elements if "DIP/Hex-
Switch" is activated as Enable State for CAN0 via WEB Frontend (factory setting).
Otherwise, configurations made via WEB Frontend take priority over those via
control elements.

Node address CAN0: The node address for interface CAN0 is set via Hex-Encoding switches S608

and S610 on the Development Board for PLCcore-iMX35:

S608: High part of the node address
S610: Low part of the node address

Example: S608=2 / S610=0 resulting node address = 20 Hex.

Bitrate CAN0: The bitrate for interface CAN0 is adjusted via bit positions 1-3 of DIP-Switch

S609 on the Development Board for PLCcore-iMX35. Table 16 lists the
coding of bitrates supported.

Table 16: Setting the bitrate for CAN0 via DIP-Switch

Bitrate [kBit/s] DIP1 DIP2 DIP3

10 OFF OFF ON

20 ON OFF OFF

50 ON OFF ON

125 OFF OFF OFF

250 OFF ON ON

500 OFF ON OFF

800 ON ON ON

1000 ON ON OFF

Master mode CAN0: The Master mode is activated via Bit position 4 of DIP-Switch S609 on the

Development Board for PLCcore-iMX35:

DIP4 = OFF: PLC is NMT-Slave
DIP4 = ON: PLC is NMT-Master

7.4.3 Setup of the configuration file "plccore-imx35.cfg"

The configuration file "/home/plc/bin/plccore-imx35.cfg" allows for comprehensive configuration of
the PLCcore-imx35. Although, working in it manually does not always make sense, because most of
the adjustments may easily be edited via WEB Frontend (compare section 7.4.1). The setup of the
configuration file is similar to the file format "Windows INI-File". It is divided into "[Sections]" which
include different entries "Entry=". Table 17 shows all configuration entries. Entries of section "[CAN0]"
take priority over settings via control elements (see section 7.4.2).

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 41

Table 17: Configuration entries of the CFG file

Section Entry Value Meaning

[CAN0] Enabled -1, 0, 1 -1: Interface CAN0 is activated,
configuration takes place via control
elements of the Development Board
(factory setting, see section 7.4.2)

0: Interface CAN0 is deactivated

1: Interface CAN0 is activated,
configuration takes place via entries of
the configuration file below

NodeID 1 … 127 or
0x01 … 0x7F

Node number for interface CAN0
(decimal or hexadecimal with prefix "0x")

Baudrate 10, 20, 50, 125, 250,
500, 800, 1000

Bitrate for interface CAN0

MasterMode 0, 1 1: Master mode is activated

0: Master mode is deactivated

[CAN1] Enabled 0, 1 0: Interface CAN1 is deactivated

1: Interface CAN1 is activated,
configuration takes place via entries of
the configuration file below

NodeID 1 … 127 or
0x01 … 0x7F

Node number for interface CAN1
(decimal or hexadecimal with prefix "0x")

Baudrate 10, 20, 50, 125, 250,
500, 800, 1000

Bitrate for interface CAN1

MasterMode 0, 1 1: Master mode is activated

0: Master mode is deactivated

[ETH0] PortNum Default Port no:
8888

Port number for the communication with the
Programming-PC and for program download
(only for PLCcore-iMX35/Z5, order number
3390065/Z5 or 3390075/Z5)

[ProcImg] EnableExtIo 0, 1 0: Only on-board I/Os of the PLCcore-
iMX35 are used for the process image
(except Temperature Sensor)

1: All I/Os supported by driver are used for
the process image (incl. Temperature
Sensor and external ADC of
Developmentboard)

(for adaptation of process image see section
8.2)

EnableSharing 0, 1 0: No sharing of process image

1: Sharing of process image is enabled

(see section 8.1)

[Visu] Enable 0, 1, -1 1: Visualization is activated

0: Visualization is deactivated

-1: Visualization support is enabled if
supported by the license, otherwise
disabled (auto-mode)

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 42

SyncTime 0, 1…n 0: Synchronization of data between PLC
and Visualization after each PLC Cycle

>0: Synchronization of data between PLC
and Visualization after <SyncTime> ms

CmdSetDispBr Preset but disabled:
./set_disp_br.sh

Optionally shell script for setting display
brightness (see section 6.8.3)

[Login] Authorization 0, 1 0: Configuration via WEB Frontend is
possible without user login

1: Configuration via WEB Frontend requires
user login

User Default Name:
PlcAdmin

If entry "User=" is available, only the user
name defined is accepted for the login to
configure via WEB Frontend.

If the entry is not available, any user
registered on the PLCcore-iMX35 (see
section 7.10) may login via WEB Frontend.

The configuration file "/home/plc/bin/plccore-imx35.cfg" includes the following factory settings:

[Login]

Authorization=1

User=PlcAdmin

[CAN0]

Enabled=-1

NodeID=0x20

Baudrate=125

MasterMode=1

[CAN1]

Enabled=0

NodeID=0

Baudrate=0

MasterMode=0

[ETH0]

PortNum=8888

[ProcImg]

EnableExtIo=1

EnableSharing=0

[Visu]

Enable=-1

SyncTime=50

7.5 Configuration of the A/D converter

The PLCcore-iMX35 consists of a 4 channel A/D converter. The latest converted values are stored in
the sysfs entry "/sys/bus/spi/devices/spi0.1/channelX" (X specifies the channel).

The PLC-program uses the I/O-driver to determine the converted A/D values. Usually the PLC-
program uses the same channel as the ADC is connected to. Hence, the corresponding channel of
channel 0 in the PLC-program is channel 0 at the ADC.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 43

A configuration file can be used to adjust the default mapping to user-specific requirements. This
enables the porting of old PLC-programs without major changes regarding the A/D channels.

The channel mapping takes place by using the configuration file "/home/etc/ADCMapping.conf". To
specify another path, the environment variable "ADC_MAPPING_FILE" can be used. If neither the
configuration file in the default-path nor the file specified by “ADC_MAPPING_FILE” exists, no
mapping will be applied by the I/O-driver.

Table 18 describes the configuration file. The shown mapping corresponds to the delivery condition of
the PLCcore-iMX35.

Table 18: Channel mapping of the A/D converter

Channel Value Configuration file Meaning

0 2 AIN0=2 Channel 0 of the PLC-program corresponds to channel 2 of
the A/D converter

1 3 AIN1=3 Channel 1 of the PLC-program corresponds to channel 3 of
the A/D converter

2 0 AIN2=0 Channel 2 of the PLC-program corresponds to channel 0 of
the A/D converter

3 1 AIN3=1 Channel 3 of the PLC-program corresponds to channel 1 of
the A/D converter

If both, the default configuration file and the file specified by "ADC_MAPPING_FILE" are existing, the
configuration is done by using the configuration file referenced by the environment value.

7.6 Boot configuration of the PLCcore-iMX35

The PLCcore-iMX35 is configured so that after Reset the PLC firmware starts automatically.
Therefore, all necessary commands are provided by the start script "/home/etc/autostart". Hence,
the required environment variables are set and drivers are booted.

If required, the start script "/home/etc/autostart" may be complemented by further entries. For
example, by entering command "pureftp", the FTP server is called automatically when the PLCcore-
iMX35 is booted. The script can be edited directly on the PLCcore-iMX35 in the FTP client "WinSCP"
(compare section 7.1) using pushbutton "F4" or "F4 Edit".

7.7 Selecting the appropriate firmware version

The PLCcore-iMX35 is delivered with different firmware versions. Those vary in the communication
protocol for the data exchange with the programming PC and they differ from each other regarding the
availability of FB communication classes (see section 6.3). The selection of the appropriate firmware
version takes place in the start script "/home/etc/autostart". By default, the "BoardID" of the module
as set in the bootloader "U-Boot" is analyzed. Table 19 lists up the assignments of firmware versions
and BoardIDs.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 44

Table 19: Assignment of BoardIDs and firmware versions for the PLCcore-iMX35

BoardID Firmware Version Remark

1010004 plccore-imx35-z4 PLCcore-iMX35/Z4 (CANopen, without Target Visualization)
communication with the programming PC via CANopen protocol
(Interface CAN0)

1010005 plccore-imx35-z5 PLCcore-iMX35/Z5 (Ethernet, without Target Visualization)
communication with the programming PC via UDP protocol
(Interface ETH0)

1010014 plccore-imx35-hmi-z4 PLCcore-iMX35-HMI/Z4 (CANopen, incl. Target Visualization)
communication with the programming PC via CANopen protocol
(Interface CAN0)

1010015 plccore-imx35-hmi-z5 PLCcore-iMX35-HMI/Z5 (Ethernet, incl. Target Visualization)
communication with the programming PC via UDP protocol
(Interface ETH0)

The configuration of BoardIDs takes place via the serial interface COM0. Therefore, the "U-Boot"
command prompt must be activated as described in section 7.2. Setting BoardIDs is carried out
via the "U-Boot" command "set boardid" by entering the corresponding number listed in Table 19, e.g.:

setenv boardid 1010005

The modified setting can be verified by entering "printenv" at the "U-Boot" command prompt.
Command

saveenv

persistently saves the current selection in the Flash of the PLCcore-iMX35. Figure 15 visualizes the
configuration of the BoardID.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 45

Figure 15: Selecting the appropriate firmware version for the PLCcore-iMX35

After completing the configuration, all preconditions for a Linux Autostart must be
reestablished according to section 7.2.

Alternatively, the appropriate firmware version may be selected directly in the start script
"/home/etc/autostart". Therefore, delete part "Select PLC Type" and insert the appropriate firmware
instead, e.g.:

PLC_FIRMWARE=plccore-iMX35-z5

7.8 Predefined user accounts

All user accounts listed in Table 20 are predefined upon delivery of the PLCcore-iMX35. Those allow
for a login to the command shell (serial RS232 connection or Telnet) and at the FTP server of the
PLCcore-iMX35.

Table 20: Predefined user accounts of the PLCcore-iMX35

User name Password Remark

PlcAdmin Plc123 Predefined user account for the administration of the
PLCcore- iMX35 (configuration, user administration,
software updates etc.)

root Sys123 Main user account ("root") of the PLCcore-iMX35

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 46

7.9 Login to the PLCcore-iMX35

7.9.1 Login to the command shell

In some cases the administration of the PLCcore-iMX35 requires the entry of Linux commands in the
command shell. Therefore, the user must be directly logged in at the module. There are two different
possibilities:

 Logging in is possible with the help of a Terminal program (e.g. HyperTerminal or TeraTerm, see
section 7.1) via the serial interface COM0 of the PLCcore-iMX35 – analog to the procedure
described for the Ethernet configuration in section 7.2. For the configuration of the terminal
settings pay attention to only use "CR" (carriage return) as end-of-line character. Login with
user name and password is not possible for "CR+LF" (carriage return + line feed)!

 Alternatively, the login is possible using a Telnet client (e.g. Telnet or also TeraTerm) via the
Ethernet interface ETH0 of the PLCcore-iMX35.

For logging in to the PLCcore-iMX35 via the Windows standard Telnet client, the command "telnet"
must be called by using the IP address provided in section 7.2, e.g.

telnet 192.168.10.248

Figure 16: Calling the Telnet client in Windows

Logging in to the PLCcore-iMX35 is possible in the Terminal window (if connected via COM0) or in the
Telnet window (if connected via ETH0). The following user account is preconfigured for the
administration of the module upon delivery of the PLCcore-iMX35 (also compare section 7.8):

User: PlcAdmin
Password: Plc123

Figure 17: Login to the PLCcore-iMX35

Figure 17 exemplifies the login to the PLCcore-iMX35 using a Windows standard Telnet client.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 47

7.9.2 Login to the FTP server

The PLCcore-iMX35 has available a FTP server (FTP Daemon) that allows file exchange with any
computer (up- and download of files). Due to security and performance reasons, the FTP server is
deactivated by default and must be started manually if required. Therefore, the user must first be
logged in to the command shell of the PLCcore-iMX35 following the procedures described in section
7.9.1. Afterwards, the following command must be entered in the Telnet or Terminal window:

pureftp

Figure 18 illustrates an example for starting the FTP server.

Figure 18: Starting the FTP server

Advice: By entering command "pureftp" in the start script "/home/etc/autostart", the FTP server

may be called automatically upon boot of the PLCcore-iMX35 (see section 7.6).

"WinSCP" - which is available as open source - would be suitable as FTP client for the computer (see
section 7.1). It consists of only one EXE file, needs no installation and may be started immediately.
After program start, dialog "WinSCP Login" appears (see Figure 19) and must be adjusted according
to the following configurations:

File protocol: FTP
Host name: IP address for the PLCcore-iMX35 as set in section 7.3
User name: PlcAdmin (for predefined user account, see section 7.8)
Password: Plc123 (for predefined user account, see section 7.8)

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 48

Figure 19: Login settings for WinSCP

After using pushbutton "Login", the FTP client logs in to the PLCcore-iMX35 and lists up the active
content of directory "/home" in the right window. Figure 20 shows FTP client "WinSCP" after
successful login to the PLCcore-iMX35.

Figure 20: FTP client for Windows "WinSCP"

After successful login, configuration files on the PLCcore-iMX35 may be edited by using pushbuttons
"F4" or "F4 Edit" within the FTP client "WinSCP" (select transfer mode "Text"). With the help of
pushbutton "F5" or "F5 Copy", files may be transferred between the computer and the PLCcore-
iMX35, e.g. for data backups of the PLCcore-iMX35 or to transfer installation files for firmware updates
(select transfer mode "Binary").

7.10 Adding and deleting user accounts

Adding and deleting user accounts requires the login to the PLCcore-iMX35 as described in section
7.9.1.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 49

Adding a new user account takes place via Linux command "adduser". In embedded systems such as
the PLCcore-iMX35, it does not make sense to open a directory for every user. Hence, parameter "-H"
disables the opening of new directories. By using parameter "-h /home" instead, the given directory
"/home" is rather assigned to the new user. To open a new user account on the PLCcore-iMX35, Linux
command "adduser" is to be used as follows:

adduser -h /home -H -G <group> <username>

Figure 21 exemplifies adding a new account on the PLCcore-iMX35 for user "admin2".

Figure 21: Adding a new user account

Advice: If the new user account shall be used to access WEB Frontend, the user name

must be entered into the configuration file "plccore-iMX35.cfg" (for details about
logging in to WEB Frontend please compare section 7.4.1 and 7.4.3).

To delete an existing user account from the PLCcore-iMX35, Linux command "deluser" plus the
respective user name must be used:

deluser <username>

7.11 How to change the password for user accounts

Changing the password for user accounts requires login to the PLCcore-iMX35 as described in section
7.9.1.

To change the password for an existing user account on the PLCcore-iMX35, Linux command
"passwd" plus the respective user name must be entered:

passwd <username>

Figure 22 exemplifies the password change for user "PlcAdmin".

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 50

Figure 22: Changing the password for a user account

7.12 Setting the system time

Setting the system time requires login to the PLCcore-iMX35 as described in section 7.9.1.

There are two steps for setting the system time of the PLCcore-iMX35. At first, the current date and
time must be set using Linux command "date". Afterwards, by using Linux command "hwclock -w" the
system time is taken over into RTC module of the PLCcore-iMX35.

Linux command "date" is structured as follows:

date [options] [YYYY.]MM.DD-hh:mm[:ss]

Example:

date 2014.06.05-14:00:35

 | | | | | |

 | | | | | +--- Second

 | | | | +------ Minute

 | | | +--------- Hour

 | | +------------ Day

 | +--------------- Month

 +------------------ Year

To set the system time of the PLCcore-iMX35 to 2014/06/05 and 14:00:35 (as shown in the example
above), the following commands are necessary:

date 2014.06.05-14:00:35

hwclock -w

The current system time is displayed by entering Linux command "date" (without parameter). The
Linux command "hwclock -r" can be used to recall current values from the RTC. By using "hwclock -s",
the current values of the RTC are taken over as system time for Linux (synchronizing the kernel with
the RTC). Figure 23 exemplifies setting and displaying the system time.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 51

Figure 23: Setting and displaying the system time

Upon start of the PLCcore-iMX35, date and time are taken over from the RTC and set as current
system time of the module. Therefore, Linux command "hwclock -s" is necessary which is included in
start script "/etc/init.d/hwclock".

7.13 File system of the PLCcore-iMX35

Pre-installed Embedded Linux on the PLCcore-iMX35 provides part of the system memory in form of a
file system. Being usual for embedded systems, most of this file system is “read/only” which means
that changes to this part can only be made by creating a new Linux-Image for the PLCcore-iMX35.
The advantage hereby is the resistance of a read/only file system against damages in case of power
breakdowns. Those occur relatively often in embedded systems because embedded systems are
usually simply turned off without previous shutdown.

Table 21 lists up writable paths of the file system during runtime. Path "/home" comprises a flash disk
that provides part of the on-board flash memory of the PLCcore-iMX35 as file system. This path is
used to store all files modifiable and updatable by the user, e.g. configuration files, PLC firmware and
PLC program files that have been loaded onto the module. Directory "/tmp" is appropriately sized to
function as temporary buffer for FTP downloads of firmware archives for PLC software updates (see
section 7.15.1).

Table 21: File system configuration of the PLCcore-iMX35

Path Size Description

/home 95516 kByte Flash disk to permanently store files modifiable and updatable by
the user (e.g. configuration files, PLC firmware, PLC program,
files for Target Visualization), data preservation in case of power
breakdown

/tmp 8192 kByte RAM disk, suitable as intermediate buffer for FTP downloads,
but no data preservation in case of power breakdown

/var 62640 kByte RAM disk which is used by the system to store temporary files,
no data preservation in case of power breakdown

/mnt Target for integrating remote directories, it is not part of the
PLCcore-iMX35 standard functionality

Sizes of file system paths that are configured or still available can be identified by using the Linux
command "df" ("DiskFree") – see Figure 24.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 52

Figure 24: Display of information about the file system

Particular information about the system login and handling the Linux command shell of the PLCcore-
iMX35 is given attention in section 7.9.

7.14 Calibration of the Touchscreen

The PLCcore-iMX35 has no on-board touch controller. Hence, an external touch controller is
necessary to use resistive Touchscreens. Touchscreen and touch controller have to be adjusted – that
means calibrated – to another before its first use. Without a calibration, the Touchscreen works
extremely imprecise which normally makes a correct operation impossible.

7.14.1 Automatic Test of Touchscreen Calibration

An extensive calibration is needed before using the Touchscreen. During booting the PLC system, the
device software can check, whether the required calibration of the Touchscreen has already been
undertaken. Therefore is tested, if the file "/home/etc/pointercal" exists and if this file has a size grater
0 byte. If this condition is not fulfilled, the appropriate calibration program "ts_calibrate" is executed
before starting the PLC firmware (section 7.13.2).

As the PLCcore-iMX35 supports displays with and without Touchscreen, an automatic check of the
Touchscreen calibration can be enabled or disabled as desired within the configuration settings of the
module. The particular calibration occurs by means of the environment variable "check_tscalibfile" of
the bootloader “U-Boot”. To set this variable, the command prompt relating to the “U-Boot” has to be
enabled first, as described in section 7.2. Table 22 lists all commands for enabling / disabling the
automatic control.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 53

Table 22: Configuration for automatically checking of Touchscreen calibration

Command Setting

setenv check_tscalibfile on
saveenv

automatically checking of Touchscreen calibration activated, in
case that file "/home/etc/pointercal" doesn't exist (or has a size of
0 byte), the calibration program "ts_calibrate" will be launched
automatically

setenv check_tscalibfile off
saveenv

automatically checking of Touchscreen calibration deactivated,
existing of file "/home/etc/pointercal" will not be checked

Advice: The command "saveenv", also stated in Table 22, is necessary to save the modified

configuration persistently in the Flash of the PLCcore-iMX35.

7.14.2 Manually calibration of the Touchscreen

The manually calibration of the Touchscreen occurs interactively, by the operators click on the
markings (“Reticles”) given on the display. The calibration program needed for it is started from the
command line, which requires login to the PLCcore-iMX35 as described in section 7.9.1. After that, the
following command has to be entered in the Telnet- or Terminal-window:

ts_calibrate

In the course of the calibration sequence, 5 markings (“Reticles”, in each corner and in the middle) are
shown one after another on the display, which are to click by the user. The more exact the shown
markings are clicked, the higher the achievable accuracy during the later operation of the
Touchscreen. It is therefore recommended to use a touchpen or stylus during calibration as it is used
for Handhelds, PDAs or drawing tablets.

After finishing calibration, the calibration data are stored in file "/home/etc/pointercal". In case this file
gets lost, e.g. through reformatting of the flash-disk, the calibration has to be carried out again.

Advice: The Development Kit PLCcore-iMX35 is delivered completely calibrated. A

recalibration is only necessary in exceptional cases (e.g. after a change of display
with integrated Touchscreen).

7.15 Software update of the PLCcore-iMX35

All necessary firmware components to run the PLCcore-iMX35 are already installed on the module
upon delivery. Hence, firmware updates should only be required in exceptional cases, e.g. to input
new software that includes new functionality.

7.15.1 Updating the PLC firmware

PLC firmware indicates the run time environment of the PLC. PLC firmware can only be generated
and modified by the producer; it is not identical with the PLC user program which is created by the
PLC user. The PLC user program is directly transferred from the OpenPCS programming environment
onto the module. No additional software is needed.

Updating the PLC firmware requires login to the command shell of the PLCcore-iMX35 as described in
section 7.9.1 and login to the FTP server as described in section 7.9.2.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 54

Updating the PLC firmware takes place via a self-extracting firmware archive that is transferred onto
the PLCcore-iMX35 via FTP. After starting the FTP server on the PLCcore-iMX35 (command "pureftp",
see section 7.9.2), the respective firmware archive can be transferred into directory "/tmp" of the
PLCcore-iMX35 (see Figure 25).

Figure 25: File transfer in FTP client "WinSCP"

Important: To transfer the firmware archive via FTP, transfer type "Binary" must be chosen. If FTP

client "WinSCP" is used, the appropriate transfer mode is to be chosen from the menu
bar. After downloading the firmware archive, it must be checked if the file transferred to
the PLCcore-iMX35 has the exact same size as the original file on the computer
(compare Figure 25). Any differences in that would indicate a mistaken transfer mode
(e.g. "Text"). In that case the transfer must be repeated using transfer type "Binary".

After downloading the self-extracting archive, the PLC firmware must be installed on the PLCcore-
iMX35. Therefore, the following commands are to be entered in the Telnet window. It must be
considered that the file name for the firmware archive is labeled with a version identifier (e.g. "install-
plccore-imx35-0506_0100" for version 5.06.01.00). This number must be adjusted when commands
are entered:

cd /tmp

chmod +x install-plccore-imx35-0506_0100.sh

./ install-plccore-imx35-0506_0100.sh

Advice: The command shell of the PLCcore-iMX35 is able to automatically complete names if the

Tab key is used ("tab completion"). Hence, it should be sufficient to enter the first letters
of each file name and the system will complement it automatically. For example, "./ins" is
completed to "./ install-plccore-imx35-0506_0100.sh" if the Tab key is used.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 55

Figure 26: Installing PLC firmware on the PLCcore-iMX35

Figure 26 exemplifies the installation of PLC firmware on the PLCcore-iMX35. After Reset the module
is started using the updated firmware.

Advice: If the PLC firmware is updated, the configuration file "/home/plc/bin/plccore-

imx35.cfg" is overwritten. This results in a reset of the PLC configuration to default
settings. Consequently, after an update, the configuration described in section 7.4
should be checked and if necessary it should be reset.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 56

7.15.2 How to update the Linux-Image

Updating the Linux-Image takes place via TFTP (Trivial FTP) within Linux bootloader "U-Boot".
Therefore, an appropriate TFTP server is necessary on the computer, e.g. freeware "TFTPD32"
(compare section 7.1). The program consists of only one EXE file that requires no installation and can
be run immediately. After the program start, an appropriate working directory ("Current Directory")
should be created by clicking on pushbutton "Browse" (e.g. "C:\PLCcore-iMX35"). The image files for
the PLCcore-iMX35 must be located in this directory ("linuximage" and "root.squashfs").

Figure 27: TFTP server for Windows "TFTPD32"

A TFTP download of the image files requires that the Ethernet configuration of the PLCcore-iMX35
is completed according to procedures describes in section 7.3. To update the Linux-Image it is
necessary to have available another serial connection to the PLCcore-iMX35 in addition to the
Ethernet connection. All configurations for the terminal program as described in section 7.2 apply
(115200 Baud, 8 Data bit, 1 Stop bit, no parity and no flow control).

Updating the Linux-Image of the PLCcore-iMX35 is only possible if Linux is not running. Hence,
Linux Autostart must be disabled prior to the updating process and "U-Boot" command prompt
must be used instead. Procedures are described in section 7.2.

After Reset (e.g. pushbutton S601 on the Development Board), the "U-Boot" command prompt
answers. To update the Linux-Image the following commands must be entered according to the
following sequence:

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 57

Table 23: Command sequence to update the Linux-Image on the PLCcore-iMX35

Command Meaning

setenv serverip <host_ip_addr> Setting the IP address of the TFTP server.
If "TFTPD32" is used, the address is shown in field
"Server Interface" on the PC.

tftp linuximage Downloading the Linux-Image from the Development
PC onto the PLCcore-iMX35

erase nor0,4 Erase the Flash area, needed by Linux-Image

cp.b ${fileaddr} 0xa00e0000 ${filesize} Saving the Linux-Image in the Flash of the PLCcore-
iMX35

tftp root.squashfs Downloading the Root File System from the
Development PC onto the PLCcore-iMX35

erase nor0,5 Erase the Flash area, needed by Root File System

cp.b ${fileaddr} 0xa04e0000 ${filesize} Saving the Root File System in the Flash of the
PLCcore-iMX35

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 58

Figure 28: Downloading the Linux-Image to the PLCcore-iMX35

After completing the configuration, conditions for a Linux Autostart must be reestablished
according to instructions in section 7.2.

After Reset is activated (e.g. pushbutton S601 on the Development Board), the PLCcore-iMX35 starts
automatically using the current Linux-Image.

Advice: After the configuration is finished, the serial connection between the computer and the

PLCcore-iMX35 is no longer necessary.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 59

8 Adaption of In-/Outputs and Process Image

8.1 Data exchange via shared process image

8.1.1 Overview of the shared process image

The PLCcore-iMX35 is based on the operating system Embedded Linux. Thus, it is possible to
execute other user-specific programs simultaneously to running the PLC firmware. The PLC program
and a user-specific C/C++ application can exchange data by using the same process image (shared
process image). Implementing user-specific C/C++ applications is based on the Software package
SO-1121 ("VMware-Image of the Linux development system for the ECUcore-iMX35").

ReadSectTable

WriteSectTable

H a r d w a r e

WriteProcImage

ReadProcImage

I / O A c c e s s

PLC Runtime System

pcimx35drv.so

pcimx35drv.ko

Application

Shared Library (so)

Kernel Object (ko)

Application

Local Image

Shared Image shmclient.c

shpimgclient.c

int main (int nArgCnt_p, char* apszArg_p[])

{

BYTE* pbVar1;

BYTE bAnyData = 0x55;

 // get address of variable in shared image

 pbVar1 = ShPImgClntGetDataSect()

 + ShPImgLayoutDscrpt.m_uiPImgMarkerOffs

+ 128; // <--- Offs. for '%MB128.0'

 // setup read and write sector table

ShPImgClntSetupReadSectTable(...);

ShPImgClntSetupWriteSectTable(...);

 // access to variable in shared image

 *pbVar1 = bAnyData;

}

User C/C++ Application

(1)

(2), (4)

(3), (5)

(6)

ProcImage Exchange Cycle:

(1) Read Local Inputs

(2) Write Shared to Local

(3) Read Local to Shared

 [Run PLC Cycle]

(4) Write Shared to Local

(5) Read Local to Shared

(6) Write Local Outputs

Var1 AT %MB128.0 : BYTE;

Var1 AT %MB128.0 : BYTE;

PLC Application

PROGRAM Prog1

VAR

 Var1 AT MB128.0 : BYTE;

END_VAR

 IF (Var1 = 16#55) THEN

(* Do any thing ... *)

 END_IF;

END_PROGRAM

IEC 61131-3 / PLC System User C/C++ Application

Input

Marker

Output

Input

Marker

Output

Figure 29: Overview of the shared process image

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 60

Not all variables are utilizable via the shared process image within a C/C++ application. Only those
directly addressed variables that the PLC program generates within the process image. As shown in
Figure 29, two separate process images are used for the data exchange with an external application
inside of the PLC runtime system. This is necessary to meet the IEC 61131-3 requirement that the
initial PLC process image may not be modified during the entire execution of one PLC program cycle.
Thereby, the PLC program always operates with the internal process image that is locally generated
within the PLC runtime system ("Local Image" in Figure 29). This is integrated within the PLC runtime
system and is protected against direct accesses from the outside. On the contrary, the user-specific,
external C/C++ application always uses the shared process image ("Shared Image" in Figure 29). This
separation of two process images enables isolation between accesses to the PLC program and the
external application. Those two in parallel and independently running processes now must only be
synchronized for a short period of time to copy the process data.

An activation of option "Share PLC process image" within the PLC configuration enables data
exchange with external applications (see section 7.4.1). Alternatively, entry "EnableSharing=" can
directly be set within section "[ProcImg]" of the configuration file "/home/plc/bin/plccore-imx35.cfg"
(see section 7.4.3). The appropriate configuration setting is evaluated upon start of the PLC firmware.
By activating option "Share PLC process image", the PLC firmware creates a second process image
as Shared Memory ("Shared Image" in Figure 29). Its task is to exchange data with external
applications. Hereby, the PLC firmware functions as Server and the external, user-specific C/C++
application functions as Client.

ReadSectorTable and WriteSectorTable both control the copying of data between the two process
images. Both tables are filled by the Client (external, user-specific C/C++ application) and are
executed by Server (PLC runtime system). The Client defines ranges of the PLC process image from
which it will read data (ReadSectorTable) or in which it will write data (WriteSectorTable). Hence, the
terms "Read" and "Write" refer to data tranfer directions from the viewpoint of the Client.

Sections to read and write may comprise all sections of the entire process image – input, output as
well as marker sections. This allows for example that a Client application writes data into the input
section of the PLC process image and reads data from the output section. Figure 29 shows the
sequence of single read and write operations. Prior to the execution of a PLC program cycle, the
physical inputs are imported into the local process image of the PLC (1). Afterwards, all sections
defined in WriteSectorTable are taken over from the shared process image into the local process
image (2). By following this sequence, a Client application for example is able to overwrite the value of
a physical input. This may be used for simulation purposes as well as for setting input data to constant
values ("Forcen"). Similarly, prior to writing the process image onto the physical outputs (6), sections
defined in WriteSectorTable are taken over from the shared process image into the local process
image. (4). Thus, a Client application is able to overwrite output information generated by the PLC
program.

The PLC firmware provides the setup of the process image. The Client application receives
information about the setup of the process image via function ShPImgClntSetup(). This function
enters start offsets and values of the input, output and marker sections into the structure of type
tShPImgLayoutDscrpt. Function ShPImgClntGetDataSect() provides the start address of the shared
process image. Upon defining a variable within the PLC program, its absolute position within the
process image is determined through sections (%I = Input, %Q = Output, %M = Marker) and offset
(e.g. %MB128.0). In each section the offset starts at zero, so that for example creating a new variable
in the marker section would be independent of values in the input and output section. Creating a
corresponding pair of variables in the PLC program as well as in the C/C++ application allows for
data exchange between the PLC program and the external application. Therefore, both sides must
refer to the same address. Structure tShPImgLayoutDscrpt reflects the physical setup of the process
image in the PLC firmware including input, output and marker sections. This is to use an addressing
procedure for defining appropriate variables in the C/C++ application that is comparable to the PLC
program. Hence, also in the C/C++ program a variable is defined in the shared process image by
indicating the respective section and its offset. The following example illustrates the creation of a
corresponding variable pair in the PLC program and C/C++ application:

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 61

VAR

 Var1 AT MB128.0 : BYTE;

END_VAR

BYTE* pbVar1;

pbVar1 = ShPImgClntGetDataSect()

 + ShPImgLayoutDscrpt.m_uiPImgMarkerOffs

 + 128; // <--- Offset for '%MB128.0'

PLC Program C/C++ Application

As described above, ReadSectorTable and WriteSectorTable manage the copy process to
exchange variable contents between the PLC and the C/C++ program. Following the example
illustrated, the Client (C/C++ application) must enter an appropriate value into the WriteSectorTable to
transfer the value of a variable from the C/C++ application to the PLC program (WriteSectorTable,
because the Client “writes” the variable to the Server):

// specify offset and size of 'Var1' and define sync type (always or on demand?)

WriteSectTab[0].m_uiPImgDataSectOffs = ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 128;

WriteSectTab[0].m_uiPImgDataSectSize = sizeof(BYTE);

WriteSectTab[0].m_SyncType = kShPImgSyncOnDemand;

// define the WriteSectorTable with the size of 1 entry

ShPImgClntSetupWriteSectTable (WriteSectTab, 1);

If several variable pairs are generated within the same transfer direction for the data exchange
between the PLC program and the C/C++ application, they should possibly all be defined in one
coherent address range. Thus, it is possible to list them as one entry in the appropriate SectorTable.
The address of the first variable must be set as the SectorOffset and the sum of the variable sizes as
SectorSize. Combining the variables improves the efficiency and the performance of the copy
processes.

For each entry of the WriteSectorTable an appropriate SyncType must be defined. It determines
whether the section is generally taken over from the shared process image into the local image
whenever there are two successive PLC cycles (kShPImgSyncAlways) or whether it is taken over on
demand (kShPImgSyncOnDemand). If classified as SyncOnDemand, the data only is copied if the
respective section before was explicitly marked as updated. This takes places by calling function
ShPImgClntWriteSectMarkNewData() and entering the corresponding WriteSectorTable-Index (e.g.
0 for WriteSectTab[0] etc.).

kShPImgSyncAlways is provided as SyncType for the ReadSectorTable (the value of the member
element m_SyncType is ignored). The PLC firmware is not able to identify which variables were
changed by the PLC program of the cycle before. Hence, all sections defined in ReadSectorTable are
always taken over from the local image into the shared process image. Thus, the respective variables
in the shared process image always hold the actual values.

The PLC firmware and the C/C++ application both use the shared process image. To prevent conflicts
due to accesses from both of those in parallel running processes at the same time, the shared process
image is internally protected by a semaphore. If one process requires access to the shared process
image, this process enters a critical section by setting the semaphore first and receiving exclusive
access to the shared process image second. If the other process requires access to the shared
process image at the same time, it also must enter a critical section by trying to set the semaphore. In
this case, the operating system identifies that the shared process image is already being used. It
blocks the second process until the first process leaves the critical section and releases the
semaphore. Thereby, the operating system assures that only one of the two in parallel running
processes (PLC runtime system and C/C++ application) may enter the critical section and receives
access to the shared process image. To ensure that both processes do not interfere with each other
too much, they should enter the critical section as less as possible and only as long as necessary.
Otherwise, the PLC cycle time may be extended and runtime variations (Jitter) may occur.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 62

The client application has available two functions to set the semaphore and to block exclusive access
to the shared process image. Function ShPImgClntLockSegment() is necessary to enter the critical
section and function ShPImgClntUnlockSegment() to leave it. The segment between both functions
is called protected section, because in this segment the client application holds access to the shared
process image without competition. The consistency of read or written data is only guaranteed within
such a protected section. Outside the protected section, the shared process image may anytime be
manipulated by the PLC runtime system. The following example shows the exclusive access to the
shared process image in the C/C++ application:

ShPImgClntLockSegment();

{

 // write new data value into Var1

 *pbVar1 = bAnyData;

 // mark new data for WriteSectorTable entry number 0

 ShPImgClntWriteSectMarkNewData (0);

}

ShPImgClntUnlockSegment();

For the example above, kShPImgSyncOnDemand was defined as SyncType upon generating entry
WriteSectorTable. Hence, taking over variable Var1 from the shared process image into the local
image can only take place if the respective section was beforehand explicitly marked as updated.
Therefore, it is necessary to call function ShPImgClntWriteSectMarkNewData(). Since function
ShPImgClntWriteSectMarkNewData() does not modify the semaphore, it may only be used within a
protected section (see example) – such as the code section between ShPImgClntLockSegment() and
ShPImgClntUnlockSegment().

The synchronization between local image and shared process image by the PLC runtime system only
takes place in-between two successive PLC cycles. A client application (user-specific C/C++ program)
is not directly informed about this point of time, but it can get information about the update of the
shared process image from the PLC runtime system. Therefore, the client application must define a
callback handler of the type tShPImgAppNewDataSigHandler, e.g.:

static void AppSigHandlerNewData (void)

{

 fNewDataSignaled_l = TRUE;

}

This callback handler must be registered with the help of function
ShPImgClntSetNewDataSigHandler(). The handler is selected subsequent to a synchronization of
the two images.

The callback handler of the client application is called within the context of a Linux signal
handler (the PLC runtime system informs the client using Linux function kill()). Accordingly, all
common restrictions for the Linux signal handler also apply to the callback handler of the client
application. In particular, it is only allowed to call a few operating system functions that are explicitly
marked as reentrant-proof. Please pay attention to not make reentrant calls of local functions within
the client application. As shown in the example, only a global flag should be set for the signaling within
the callback handler. This flag will later on be evaluated and processed in the main loop of the client
application.

8.1.2 API of the shared process image client

As illustrated in Figure 29, the user-specific C/C++ application exclusively uses the API (Application
Programming Interface) provided by the shared process image client. This API is declared in the

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 63

header file shpimgclient.h and implemented in the source file shpimgclient.c. It contains the following
types (partly defined in shpimg.h) and functions:

Structure tShPImgLayoutDscrpt

typedef struct

{

 // definition of process image sections

 unsigned int m_uiPImgInputOffs; // start offset of input section

 unsigned int m_uiPImgInputSize; // size of input section

 unsigned int m_uiPImgOutputOffs; // start offset of output section

 unsigned int m_uiPImgOutputSize; // size of output section

 unsigned int m_uiPImgMarkerOffs; // start offset of marker section

 unsigned int m_uiPImgMarkerSize; // size of marker section

} tShPImgLayoutDscrpt;

Structure tShPImgLayoutDscrpt describes the setup of the process image given by the PLC
firmware. The client application receives the information about the setup of the process image via
function ShPImgClntSetup(). This function enters start offsets and values of input, output and marker
sections into the structure provided upon function calling.

Structure tShPImgSectDscrpt

typedef struct

{

 // definition of data exchange section

 unsigned int m_uiPImgDataSectOffs;

 unsigned int m_uiPImgDataSectSize;

 tShPImgSyncType m_SyncType; // only used for WriteSectTab

 BOOL m_fNewData;

} tShPImgSectDscrpt;

Structure tShPImgSectDscrpt describes the setup of a ReadSectorTable or WriteSectorTable entry
that must be defined by the client. Both tables support the synchronization between the local image of
the PLC runtime system and the shared process image (see section 8.1.1). Member element
m_uiPImgDataSectOffs defines the absolute start offset of the section within the shared process
images. The respective start offsets of the input, output and marker sections can be determined
through structure tShPImgLayoutDscrpt. Member element m_uiPImgDataSectSize determines the
size of the section which may include one or more variables. Member element m_SyncType only
applies to entries of the WriteSectorTable. It determines whether the section is generally taken over
from the shared process image into the local image whenever there are two successive PLC cycles
(kShPImgSyncAlways) or whether it is taken over on demand (kShPImgSyncOnDemand). If
classified as SyncOnDemand, the data must be marked as modified by calling function
ShPImgClntWriteSectMarkNewData(). It sets the member element m_fNewData to TRUE. The client
application should never directly modify this member element.

Function ShPImgClntSetup

BOOL ShPImgClntSetup (tShPImgLayoutDscrpt* pShPImgLayoutDscrpt_p);

Function ShPImgClntSetup() initializes the shared process image client and connects itself
with the storage segment for the shared process image which is generated by the PLC runtime
system. Afterwards, it enters the start offsets and values of the input, output and marker
sections into the structure of type tShPImgLayoutDscrpt provided upon function call. Hence, the

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 64

client application receives notice about the process image setup managed by the PLC firmware.

If the PLC runtime system is not active when the function is called or if it has not generated a
shared process image (option "Share PLC process image" in the PLC configuration deactivated,
see section 8.1.1), the function will return with the return value FALSE. If the initialization was
successful, the return value will be TRUE.

Function ShPImgClntRelease

BOOL ShPImgClntRelease (void);

Function ShPImgClntRelease() shuts down the shared process image client and disconnects
the connection to the storage segment generated for the shared process image by the PLC
runtime system.

If executed successfully, the function delivers return value TRUE. If an error occurs, it will
deliver return value FALSE.

Function ShPImgClntSetNewDataSigHandler

BOOL ShPImgClntSetNewDataSigHandler (

 tShPImgAppNewDataSigHandler pfnShPImgAppNewDataSigHandler_p);

Function ShPImgClntSetNewDataSigHandler() registers a user-specific callback handler. This
callback handler is called after a synchronization of both images. Registered callback handlers
are cleared by the parameter NULL.

The callback handler is called within the context of a Linux signal handler. Accordingly, all
common restrictions for the Linux signal handler also apply to the callback handler (see
section 8.1.1).

If executed successfully, the function delivers return value TRUE. If an error occurs, it will
deliver return value FALSE.

Function ShPImgClntGetHeader

tShPImgHeader* ShPImgClntGetHeader (void);

Function ShPImgClntGetHeader() provides a pointer to the internally used structure type
tShPImgHeader to manage the shared process image. The client application does usually not
need this structure, because all data that it includes can be read and written through functions
of the API provided by the shared process image client.

Function ShPImgClntGetDataSect

BYTE* ShPImgClntGetDataSect (void);

Function ShPImgClntGetDataSect() provides a pointer to the beginning of the shared process
image. This pointer represents the basic address for all accesses to the shared process image;
including the definition of sections ReadSectorTable and WriteSectorTable (see section 8.1.1).

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 65

Functions ShPImgClntLockSegment and ShPImgClntUnlockSegment

BOOL ShPImgClntLockSegment (void);

BOOL ShPImgClntUnlockSegment (void);

To exclusively access the shared process image, the client application has available two
functions - function ShPImgClntLockSegment() to enter the critical section and function
ShPImgClntUnlockSegment() to leave it. The segment between both functions is called
protected section, because in this segment the client application holds unrivaled access to the
shared process image (see section 8.1.1). The consistency of read or written data is only
guaranteed within such a protected section. Outside the protected section, the shared process
image may anytime be manipulated by the PLC runtime system. To ensure that the client
application does not interfere with the PLC runtime system too much, the critical sections should
be set as less as possible and only as long as necessary. Otherwise, the PLC cycle time may
be extended and runtime variations (Jitter) may occur.

If executed successfully, the function delivers return value TRUE. If an error occurs, it will
deliver return value FALSE.

Function ShPImgClntSetupReadSectTable

BOOL ShPImgClntSetupReadSectTable (

 tShPImgSectDscrpt* paShPImgReadSectTab_p,

 unsigned int uiNumOfReadDscrptUsed_p);

Function ShPImgClntSetupReadSectTable() initializes the ReadSectorTable with the values
defined by the client. The client hereby determines those sections of the PLC process image
from which it wants to read data (see section 8.1.1). Parameter paShPImgReadSectTab_p
holds elements of the structure tShPImgSectDscrpt and must be transferred as start address of
a section. Parameter uiNumOfReadDscrptUsed_p indicates how many elements the section
has.

kShPImgSyncAlways is provided as SyncType for the ReadSectorTable.

The maximum amount of possible elements for the ReadSectorTable is defined by the constant
SHPIMG_READ_SECT_TAB_ENTRIES and can only be modified if the shared library
"pcimx35drv.so" is generated again and at the time (this requires SO-1119 - "Driver
Development Kit for the ECUcore-iMX35", see section 8.2).

If executed successfully, the function delivers return value TRUE. If an error occurs, it will
deliver return value FALSE.

Function ShPImgClntSetupWriteSectTable

BOOL ShPImgClntSetupWriteSectTable (

 tShPImgSectDscrpt* paShPImgWriteSectTab_p,

 unsigned int uiNumOfWriteDscrptUsed_p);

Function ShPImgClntSetupWriteSectTable() initializes the WriteSectorTable with the values
defined by the client. The client hereby determines those sections of the PLC process image
from which it wants to write data (see section 8.1.1). Parameter paShPImgWriteSectTab_p
holds elements of structure tShPImgSectDscrpt and must be transferred as start address of a
section. Parameter uiNumOfWriteDscrptUsed_p indicates how many elements the section has.

For each entry in the WriteSectorTable the SyncType must be defined. This SyncType defines
whether the section is always taken over into the local image between two PLC cycles
(kShPImgSyncAlways) or only on demand (kShPImgSyncOnDemand). If taken over on
demand, the respective section is explicitly marked as updated by calling

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 66

ShPImgClntWriteSectMarkNewData().

The maximum amount of possible elements for the WriteSectorTable is defined by the constant
SHPIMG_WRITE_SECT_TAB_ENTRIES and can only be modified if the shared library
"pcimx35drv.so" is generated again and at the same time (this requires SO-1119 - "Driver
Development Kit for the ECUcore-iMX35", see section 8.2).

If executed successfully, the function delivers return value TRUE. If an error occurs, it will
deliver return value FALSE.

Function ShPImgClntWriteSectMarkNewData

BOOL ShPImgClntWriteSectMarkNewData (unsigned int uiWriteDscrptIdx_p);

For the content of a section that is held by the WriteSectorTable, function
ShPImgClntWriteSectMarkNewData() marks this content as modified. This function is used
(for sections with SyncType kShPImgSyncOnDemand) to initiate the copy process of data
from the shared process image into the local image of the PLC.

Function ShPImgClntWriteSectMarkNewData() directly accesses the header of the shared
process image without setting a semaphore before. Hence, it may only be used within the
protected section – in the code section between ShPImgClntLockSegment() and
ShPImgClntUnlockSegment().

If executed successfully, the function delivers return value TRUE. If an error occurs, it will
deliver return value FALSE.

8.1.3 Creating a user-specific client application

Software package SO-1121 ("VMware image of the Linux Development System") is the
precondition for the implementation of user-specific C/C++ applications. It contains a complete Linux
development system in the form of a VMware image. Hence, it allows for an easy introduction into the
C/C++ software development for the PLCcore-iMX35. Thus, the VMware image is the ideal basis to
develop Linux-based user programs on the same host PC that already has the OpenPCS IEC 61131
programming system installed on it. The VMware image of the Linux development system includes the
GNU-Crosscompiler Toolchain for ARM11 processors. Additionally, it includes essential server
services that are preconfigured and usable for effective software development. Details about the
VMware image of the Linux development system and instructions for its usage are described in the
"System Manual ECUcore-iMX35" (Manual no: L-1259).

As illustrated in Figure 29, the user-specific C/C++ application uses the API (files shpimgclient.c and
shpimgclient.h) which is provided by the shared process image client. The shared process image
client is based on services provided by the shared memory client (files shmclient.c and shmclient.h).
Both client implementations are necessary to generate a user-specific C/C++ application. The archive
of the shared process image demos (shpimgdemo.tar.gz) contains the respective files. To create
own user-specific client applications, it is recommended to use this demo project as the basis for own
adaptations and extensions. Moreover, this demo project contains a Makefile with all relevant
configuration adjustments that are necessary to create a Linux application for the PLCcore-iMX35.
Table 24 lists all files of the archive "shpimgdemo.tar.gz" and classifies those as general part of the
C/C++ application or as specific component for the demo project "shpimgdemo".

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 67

Table 24: Content of the archive files "shpimgdemo.tar.gz"

File Necessary for all C/C++
applications

In particular for demo
"shpimgdemo"

shpimgclient.c x

shpimgclient.h x

shmclient.c x

shmclient.h x

shpimg.h x

global.h x

Makefile draft, to be adjusted

shpimgdemo.c x

trmio.c x

trmio.h x

trace.c x

The archive file "shpimgdemo.tar.gz" including the shared process image demo must be unzipped
into any subdirectory following the path "/projects/ECUcore-iMX35/user" within the Linux development
system. Therefore, command "tar" must be called:

tar xzvf shpimgdemo.tar.gz

During the unzipping process, command "tar" independently generates the subdirectory
"shpimgdemo". For example, if the command is called in directory "/projects/ECUcore-iMX35/user”, all
archive files will be unzipped into the path "/projects/ECUcore-iMX35/user/shpimgdemo". Figure 30
exemplifies the unzipping process of "shpimgdemo.tar.gz" within the Linux development system.

Figure 30: Unzipping the archive files shpimgdemo.tar.gz in the Linux development system

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 68

After unzipping and switching into subdirectory "shpimgdemo", the demo project can be created by
calling command "make":

cd shpimgdemo

make

Figure 31 shows how the demo project "shpimgdemo" is generated in the Linux development system.

Figure 31: Generating the demo project "shpimgdemo" in the Linux development system

Section 8.1.4 describes the usage and handling of the demo project "shpimgdemo" on the PLCcore-
iMX35.

8.1.4 Example for using the shared process image

The demo project "shpimgdemo" (described in section 8.1.3) in connection with the PLC program
example "RunLight" both exemplify the data exchange between a PLC program and a user-specific
C/C++ application.

Technical background

The PLC program generates some variables in the process image as directly addressable variables. In
a C/C++ application, all those variables are usable via the shared process image. For the PLC
program example "RunLight" those are the following variables:

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 69

(* variables for local control via on-board I/Os *)

bButtonGroup AT %IB0.0 : BYTE;

iAnalogValue AT %IW8.0 : INT;

bLEDGroup0 AT %QB0.0 : BYTE;

bLEDGroup1 AT %QB1.0 : BYTE;

(* variables for remote control via shared process image *)

uiRemoteSlidbarLen AT %MW512.0 : UINT; (* out: length of slidebar *)

bRemoteStatus AT %MB514.0 : BYTE; (* out: Bit0: RemoteControl=on/off *)

bRemoteDirCtrl AT %MB515.0 : BYTE; (* in: direction left/right *)

iRemoteSpeedCtrl AT %MW516.0 : INT; (* in: speed *)

Variables of the PLC program are accessible from a C/C++ application via the shared process image.
Therefore, sections must be generated for the ReadSectorTable and WriteSectorTable on the one
hand and on the other hand, pointers must be defined for accessing the variables. The following
program extract shows this using the example "shpimgdemo.c". Function ShPImgClntSetup() inserts
the start offsets of input, output and marker sections into the structure ShPImgLayoutDscrpt. Hence,
on the basis of the initial address provided by ShPImgClntGetDataSect(), the absolute initial
addresses of each section in the shared process image can be determined. To identify the address of
a variable, the variable’s offset within the particular section must be added. For example, the absolute
address to access the variable "bRemoteDirCtrl AT %MB515.0 : BYTE;" results from the sum of the
initial address of the shared process image (pabShPImgDataSect), the start offset of the marker
section (ShPImgLayoutDscrpt.m_uiPImgMarkerOffs für "%M…") as well as the direct address within
the marker section which was defined in the PLC program (515 for "%MB515.0"):

 pbPImgVar_61131_bDirCtrl = (BYTE*) (pabShPImgDataSect

 + ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 515);

The following code extract shows the complete definition of all variables in the demo project used for
exchanging data with the PLC program:

// ---- Setup shared process image client ----

fRes = ShPImgClntSetup (&ShPImgLayoutDscrpt);

if (!fRes)

{

 printf ("\n*** ERROR *** Init of shared process image client failed");

}

pabShPImgDataSect = ShPImgClntGetDataSect();

// ---- Read Sector Table ----

// Input Section: bButtonGroup AT %IB0.0

{

 ShPImgReadSectTab[0].m_uiPImgDataSectOffs =

 ShPImgLayoutDscrpt.m_uiPImgInputOffs + 0;

 ShPImgReadSectTab[0].m_uiPImgDataSectSize = sizeof(BYTE);

 ShPImgReadSectTab[0].m_SyncType = kShPImgSyncAlways;

 pbPImgVar_61131_bButtonGroup = (BYTE*) (pabShPImgDataSect

 + ShPImgLayoutDscrpt.m_uiPImgInputOffs + 0);

}

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 70

// Output Section: bLEDGroup0 AT %QB0.0

// bLEDGroup1 AT %QB1.0

{

 ShPImgReadSectTab[1].m_uiPImgDataSectOffs =

 ShPImgLayoutDscrpt.m_uiPImgOutputOffs + 0;

 ShPImgReadSectTab[1].m_uiPImgDataSectSize = sizeof(BYTE) + sizeof(BYTE);

 ShPImgReadSectTab[1].m_SyncType = kShPImgSyncAlways;

 pbPImgVar_61131_bLEDGroup0 = (BYTE*) (pabShPImgDataSect

 + ShPImgLayoutDscrpt.m_uiPImgOutputOffs + 0);

 pbPImgVar_61131_bLEDGroup1 = (BYTE*) (pabShPImgDataSect

 + ShPImgLayoutDscrpt.m_uiPImgOutputOffs + 1);

}

// Marker Section: uiSlidbarLen AT %MW512.0

// bStatus AT %MB514.0

{

 ShPImgReadSectTab[2].m_uiPImgDataSectOffs =

 ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 512;

 ShPImgReadSectTab[2].m_uiPImgDataSectSize = sizeof(unsigned short int)

 + sizeof(BYTE);

 ShPImgReadSectTab[2].m_SyncType = kShPImgSyncAlways;

 pbPImgVar_61131_usiSlidbarLen = (unsigned short int*) (pabShPImgDataSect

 + ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 512);

 pbPImgVar_61131_bStatus = (BYTE*) (pabShPImgDataSect

 + ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 514);

}

fRes = ShPImgClntSetupReadSectTable (ShPImgReadSectTab, 3);

if (!fRes)

{

 printf ("\n*** ERROR *** Initialization of read sector table failed");

}

// ---- Write Sector Table ----

// Marker Section: bDirCtrl AT %MB515.0

// iSpeedCtrl AT %MB516.0

{

 ShPImgWriteSectTab[0].m_uiPImgDataSectOffs =

 ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 515;

 ShPImgWriteSectTab[0].m_uiPImgDataSectSize = sizeof(BYTE) + sizeof(WORD);

 ShPImgWriteSectTab[0].m_SyncType = kShPImgSyncOnDemand;

 pbPImgVar_61131_bDirCtrl = (BYTE*) (pabShPImgDataSect

 + ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 515);

 psiPImgVar_61131_iSpeedCtrl = (short int*) (pabShPImgDataSect

 + ShPImgLayoutDscrpt.m_uiPImgMarkerOffs + 516);

}

fRes = ShPImgClntSetupWriteSectTable (ShPImgWriteSectTab, 1);

if (!fRes)

{

 printf ("\n*** ERROR *** Initialization of write sector table failed");

}

Realization on the PLCcore-iMX35

To enable the execution of the shared process image demo without previous introduction into the
Linux-based C/C++ programming for the PLCcore-iMX35, the module comes with a preinstalled,
translated and ready-to-run program version and PLC firmware ("/home/plc/bin/shpimgdemo"). The
following description refers to this program version. Alternatively, the demo project can be newly-
generated from the corresponding source files (see section 8.1.3) and can be started afterwards.

The following steps are necessary to run the shared process image demo on the PLCcore-iMX35:

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 71

1. Activate option "Share PLC process image" in the PLC configuration (see sections 8.1.1, 7.4.1
and 7.4.3).

2. Open the PLC program example "RunLight" in the OpenPCS IEC 61131 programming system und

build the project for a target hardware of the type "SYSTEC - PLCcore-iMX35".

3. Select the network connection to the PLCcore-iMX35 und download the program.

4. Start the PLC program on the PLCcore-iMX35.

5. Login to the command shell of the PLCcore-iMX35 as described in section 7.9.1.

6. Switch to the directory "/home/plc/bin" and call the demo program "shpimgdemo":

cd /home/plc/bin

./shpimgdemo

The digital outputs of the PLCcore-iMX35 are selected as runlight. With the help of pushbuttons
S604 (DI0) and S605 (DI1), the running direction can be changed. After starting the demo
program "shpimgdemo" on the PLCcore-iMX35, actual status information about the runlight is
indicated cyclically in the terminal (see Figure 32).

Figure 32: Terminal outputs of the demo program "shpimgdemo" after start

7. By pressing pushbutton S607 (DI3), the control of the runlight direction and speed is handed over

to the demo program "shpimgdemo". Afterwards, the running direction may be set by the C
application by using the cursor pushbuttons left and right (← und →) in the terminal window and
the speed may be changed by using cursor pushbuttons up and down (↑ und ↓).

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 72

Figure 33: Terminal outputs of the demo program "shpimgdemo" after user inputs

Figure 33 shows the terminal outputs of the demo program "shpimgdemo" in answer to activating
the cursor pushbuttons.

The demo program "shpimgdemo" may be terminated by pressing "Ctrl+C" in the terminal window.

8.2 Driver Development Kit (DDK) for the PLCcore-iMX35

The Driver Development Kit (DDK) for the ECUcore-iMX35 (resp. PLCcore-iMX35) is distributed
as additional software package with the order number SO-1119. It is not included in the
delivery of the PLCcore-iMX35 or the Development Kit PLCcore-iMX35. The "Software Manual
Driver Development Kit for the ECUcore-iMX35" (Manual no.: L-1263) provides details about the DDK.

The Driver Development Kit for the ECUcore-iMX35 (resp. PLCcore-iMX35) enables the user to adapt
an I/O level to self-developed baseboards. The Embedded Linux on the PLCcore-iMX35 supports
dynamic loading of drivers during runtime. Hence, it allows for a separation of the PLC runtime system
and I/O drivers. Consequently, the user is able to completely adapt the I/O driver to own requirements
– without having to modify the PLC runtime system.

By using the DDK, the following resources may be integrated into the I/O level:

- Periphery (usually GPIO) of the ARM1136JF-S
- Address-/Data Bus (memory-mapped periphery)

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 73

- SPI-Bus and I
2
C-Bus

- All other resources provided by the operating system, e.g. file system and TCP/IP

Figure 34 provides an overview of the DDK structure and its components. The DDK contains amongst
others the source code of the Linux kernel driver (pcimx35drv.ko) and the Linux user library
(pcimx35drv.so).

Shared
Process
Image

I/O Driver
Kernel Module

(pcimx35drv.ko)

I/O Driver
Userspace Library
(pcimx35drv.so)

I2C Driver
(Part of the

LinuxBSP)

SPI Driver
(Part of the

LinuxBSP)

GPIO
Memory
Mapped

I/O's
EEPROM TMP101

PLC Runtime System
(plccore-imx35-zx)

User C/C++ Application

Userspace / Applikationen

Kernelspace

Hardware

File System

TCP/IP

C Source Code

Figure 34: Overview of the Driver Development Kit for the PLCcore-iMX35

Scope of delivery / components of the DDK:

The DDK contains the following components:

1. Source code for the Linux kernel driver (pcimx35drv.ko, see Figure 34); includes all files

necessary to regenerate kernel drivers (C and H files, Make file etc.)

2. Source code for the Linux user library (pcimx35drv.so, see Figure 34); contains all files (incl.

implementation of Shared Process Image) necessary to regenerate a user library (C and H files,
Make file etc.)

3. I/O driver demo application (iodrvdemo) in the source code; allows for a quick and trouble-free test

of the I/O drivers

4. Documentation

The Driver Development Kit is based on the software package SO-1121 ("VMware-Image of the Linux
development system"). It contains sources of the LinuxBSP used and it includes the necessary GNU-
Crosscompiler Toolchain for ARM11 processors.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 74

8.3 Testing the hardware connections

The PLCcore-iMX35 primarily is designed as vendor part for the application in industrial controls.
Hence, the PLCcore-iMX35 typically is integrated in a user-specific baseboard. To enable trouble-free
inspection of correct I/O activation, the test program "iodrvdemo" is installed on the module together
with the PLC firmware. This test program is directly tied in with the I/O driver and allows quick and
direct access to the periphery.

At first, if a PLC runtime system is running, it must be quit. This is to ensure that the test program
"iodrvdemo" receives exclusive access to all I/O resources. To do so, script "stopplc" may possibly be
called:

cd /home/plc

./stopplc

Afterwards, the I/O driver may be reloaded and the test program "iodrvdemo" may be started:

cd bin

insmod pcimx35drv.ko

./iodrvdemo

Figure 35 exemplifies the testing of the hardware connections using "iodrvdemo".

Figure 35: Testing the hardware connections using "iodrvdemo"

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 75

Appendix A: Firmware function scope of PLCcore-iMX35

Table 25 lists all firmware functions and function blocks available on the PLCcore-iMX35.

Sign explanation:

FB Function block
FUN Function
Online Help OpenPCS online help
L-1054 Manual "SYS TEC-specific extensions for OpenPCS / IEC 61131-3", Manual no.:

L-1054)
PARAM:={0,1,2} values 0, 1 and 2 are valid for the given parameter

Table 25: Firmware functions and function blocks of PLCcore-iMX35

Name Type Reference Remark

PLC standard Functions and Function Blocks

SR FB Online Help

RS FB Online Help

R_TRIG FB Online Help

F_TRIG FB Online Help

CTU FB Online Help

CTD FB Online Help

CTUD FB Online Help

TP FB Online Help

TON FB Online Help

TOF FB Online Help

Functions and Function Blocks for string manipulation

LEN FUN L-1054

LEFT FUN L-1054

RIGHT FUN L-1054

MID FUN L-1054

CONCAT FUN L-1054

INSERT FUN L-1054

DELETE FUN L-1054

REPLACE FUN L-1054

FIND FUN L-1054

GETSTRINFO FB L-1054

CHR FUN L-1054

ASC FUN L-1054

STR FUN L-1054

VAL FUN L-1054

Functions and Function Blocks for OpenPCS specific task controlling

ETRC FB L-1054

PTRC FB L-1054

GETVARDATA FB Online Help

GETVARFLATADDRESS FB Online Help

GETTASKINFO FB Online Help

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 76

Name Type Reference Remark

Functions and Function Blocks for handling of non-volatile data

NVDATA_BIT FB L-1054 DEVICE:={0,1} see
(1)

NVDATA_INT FB L-1054 DEVICE:={0,1} see
(1)

NVDATA_STR FB L-1054 DEVICE:={0,1} see
(1)

NVDATA_BIN FB L-1054 DEVICE:={0,1} see
(1)

Functions and Function Blocks for handling of time

GetTime FUN Online Help

GetTimeCS FUN Online Help

DT_CLOCK FB L-1054

DT_ABS_TO_REL FB L-1054

DT_REL_TO_ABS FB L-1054

Functions and Function Blocks for Serial interfaces

SIO_INIT FB L-1054 PORT:={0,1} see
(2)

SIO_STATE FB L-1054 PORT:={0,1} see
(2)

SIO_READ_CHR FB L-1054 PORT:={0,1} see
(2)

SIO_WRITE_CHR FB L-1054 PORT:={0,1} see
(2)

SIO_READ_STR FB L-1054 PORT:={0,1} see
(2)

SIO_WRITE_STR FB L-1054 PORT:={0,1} see
(2)

SIO_READ_BIN FB L-1054 PORT:={0,1} see
(2)

SIO_WRITE_BIN FB L-1054 PORT:={0,1} see
(2)

Functions and Function Blocks for CAN interfaces / CANopen

CAN_GET_LOCALNODE_ID FB L-1008 NETNUMBER:={0}

CAN_CANOPEN_KERNEL_STATE FB L-1008 NETNUMBER:={0}

CAN_REGISTER_COBID FB L-1008 NETNUMBER:={0}

CAN_PDO_READ8 FB L-1008 NETNUMBER:={0}

CAN_PDO_WRITE8 FB L-1008 NETNUMBER:={0}

CAN_SDO_READ8 FB L-1008 NETNUMBER:={0}

CAN_SDO_WRITE8 FB L-1008 NETNUMBER:={0}

CAN_SDO_READ_STR FB L-1008 NETNUMBER:={0}

CAN_SDO_WRITE_STR FB L-1008 NETNUMBER:={0}

CAN_SDO_READ_BIN FB L-1008 NETNUMBER:={0}

CAN_SDO_WRITE_BIN FB L-1008 NETNUMBER:={0}

CAN_GET_STATE FB L-1008 NETNUMBER:={0}

CAN_NMT FB L-1008 NETNUMBER:={0}

CAN_RECV_EMCY_DEV FB L-1008 NETNUMBER:={0}

CAN_RECV_EMCY FB L-1008 NETNUMBER:={0}

CAN_WRITE_EMCY FB L-1008 NETNUMBER:={0}

CAN_RECV_BOOTUP_DEV FB L-1008 NETNUMBER:={0}

CAN_RECV_BOOTUP FB L-1008 NETNUMBER:={0}

CAN_ENABLE_CYCLIC_SYNC FB L-1008 NETNUMBER:={0}

CAN_SEND_SYNC FB L-1008 NETNUMBER:={0}

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 77

Name Type Reference Remark

CANL2_INIT FB L-1008 NETNUMBER:={0} see
(3)

CANL2_SHUTDOWN FB L-1008 NETNUMBER:={0} see
(3)

CANL2_RESET FB L-1008 NETNUMBER:={0} see
(3)

CANL2_GET_STATUS FB L-1008 NETNUMBER:={0} see
(3)

CANL2_DEFINE_CANID FB L-1008 NETNUMBER:={0} see
(3)

CANL2_DEFINE_CANID_RANGE FB L-1008 NETNUMBER:={0} see
(3)

CANL2_UNDEFINE_CANID FB L-1008 NETNUMBER:={0} see
(3)

CANL2_UNDEFINE_CANID_RANGE FB L-1008 NETNUMBER:={0} see
(3)

CANL2_MESSAGE_READ8 FB L-1008 NETNUMBER:={0} see
(3)

CANL2_MESSAGE_READ_BIN FB L-1008 NETNUMBER:={0} see
(3)

CANL2_MESSAGE_WRITE8 FB L-1008 NETNUMBER:={0} see
(3)

CANL2_MESSAGE_WRITE_BIN FB L-1008 NETNUMBER:={0} see
(3)

CANL2_MESSAGE_UPDATE8 FB L-1008 NETNUMBER:={0} see
(3)

CANL2_MESSAGE_UPDATE_BIN FB L-1008 NETNUMBER:={0} see
(3)

Functions and Function Blocks for Ethernet interfaces / UDP

LAN_GET_HOST_CONFIG FB L-1054 NETNUMBER:={0}

LAN_ASCII_TO_INET FB L-1054 NETNUMBER:={0}

LAN_INET_TO_ASCII FB L-1054 NETNUMBER:={0}

LAN_GET_HOST_BY_NAME FB L-1054 NETNUMBER:={0}

LAN_GET_HOST_BY_ADDR FB L-1054 NETNUMBER:={0}

LAN_UDP_CREATE_SOCKET FB L-1054 NETNUMBER:={0}

LAN_UDP_CLOSE_SOCKET FB L-1054 NETNUMBER:={0}

LAN_UDP_RECVFROM_STR FB L-1054 NETNUMBER:={0}

LAN_UDP_SENDTO_STR FB L-1054 NETNUMBER:={0}

LAN_UDP_RECVFROM_BIN FB L-1054 NETNUMBER:={0}

LAN_UDP_SENDTO_BIN FB L-1054 NETNUMBER:={0}

Functions and Function Blocks for Target Visualization

HMI_REG_KEY_FUNCTION_TAB FB L-1321 HMI Version only see
(4)

HMI_SEL_KEY_FUNCTION_TAB FB L-1321 HMI Version only see
(4)

HMI_REG_EDIT_CONTROL_TAB FB L-1321 HMI Version only see
(4)

HMI_SEL_EVENT_HANDLER FB L-1321 HMI Version only see
(4)

HMI_GET_INPUT_EVENT FB L-1321 HMI Version only see
(4)

HMI_CLR_INPUT_EVENT_QUEUE FB L-1321 HMI Version only see
(4)

HMI_SEND_KEY_TO_BROWSER FB L-1321 HMI Version only see
(4)

HMI_SET_DISPLAY_BRIGHTNESS FB L-1321 HMI Version only see
(4)

Functions and Function Blocks for File System

FILE_OPEN FB Technical
Note File
System
Function
Block Library
Reference

FILE_CLOSE FB

FILE_READ FB

FILE_READ_LINE FB

FILE_WRITE FB

FILE_SEEK FB

FILE_SYNC FB

FILE_STAT FB

FILE_CHMOD FB

FILE_TOUCH FB

FILE_DELETE FB

FILE_RENAME FB

FILE_COPY FB

FILE_SPLIT_PATH FB

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 78

Name Type Reference Remark

FILE_DIR_OPEN FB

FILE_DIR_CLOSE FB

FILE_DIR_READ FB

FILE_GET_DIR FB

FILE_SET_DIR FB

FILE_MKDIR FB

FILE_RMDIR FB

FILE_MKFIFO FB

FILE_EXEC_SYS_CMD FB

FTYPE_TO_INT FUN

FSEEK_TO_UINT FUN

FPERM_TO_STRING FUN

SYSERR_TO_STRING FUN

(1)

 The PLCcore-iMX35 supports the following devices for saving of nonvolatile data:
DEVICE:=0: Nonvolatile data are written into file "/home/plc/plcdata/PlcPData.bin". This file

has a fix size of 32 kByte. By calling function blocks of type NVDATA_Xxx in a
writing mode, the modified data is directly stored into file
"/home/plc/plcdata/PlcPData.bin" ("flush"). Thus, unsecured data is not getting
lost in case of power interruption.

DEVICE:=1: Nonvolatile data are written into EEPROM on PLCcore-iMX35. This EEPROM
has a fix size of 32 kByte.

(2)

 Interface COM0 (PORT:=0) primarily serves as service interface to administer the PLCcore-
iMX35. Hence, this interface should only be used for sign output. The module always tries to
interpret and execute sign inputs as Linux commands (see section 6.5.1).

(3)

 The usage of Function Blocks from type CANL2_Xxx is only possible, if the according CAN
interface is not used already by CANopen. Due to its necessary to disable the according CAN
interface in the PLC configuration (see section 7.4.1), otherwise the Function Blocks from type
CANL2_Xxx can't be used. Alternatively, entry "Enable=" can directly be set to 0 within section
"[CANx]" of the configuration file "/home/plc/bin/plccore-imx35.cfg" (see section 7.4.3).

(4)

 The Function Blocks from type HMI_Xxx are only available for the HMI version of the PLCcore-
iMX35 (Order number 3390075).

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 79

Appendix B: Reference design for the PLCcore-iMX35

1

2

S 6 0 4

R620

1 0 k

C602

1 0 0 n

3V3

G N D

USER-Switch 1

1

2

S 6 0 5

R621

1 0 k

C603

1 0 0 n

3V3

G N D

USER-Switch 2

USER_SW1 USER_SW2

12

JP604

JP1X2

12

JP605

JP1X2

1

2

S 6 0 6

R622

1 0 k

C604

1 0 0 n

3V3

G N D

USER-Switch 3

1

2

S 6 0 7

R623

1 0 k

C605

1 0 0 n

3V3

G N D

USER-Switch 4

USER_SW3 USER_SW4

12

JP606

JP1X2

12

JP607

JP1X2

1

2

S 6 0 2

1

2

S 6 0 1

RESET

1

2

S 6 0 0

CONFIG

B O O T

CONFIG_IN

/MR /BOOT

RUN_STOP

G N D G N D G N D

3V3

R619

1 k

R618

1 k

G N D

3V3

1

2

3

S 6 0 3

MMP221

Figure 36: Reference design for User Controls

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 80

Run_LED Error_LED

2

1

D600

LED_gn

R606

2 7 0 R

3V3

G N D

2

3

1

Q600

2N7002

R612

1 0 k

RUN-LED

2

1

D601

LED_rt

R607

2 7 0 R

3V3

G N D

2

3

1

Q601

2N7002

R617

1 0 k

ERROR-LED

USER_LED1

2

1

D602

LED_gn

R608

2 7 0 R

3V3

G N D

2

3

1

Q602

2N7002

R613

1 0 k

USER-LED1

12

JP600

JP1X2

USER_LED2

2

1

D603

LED_gn

R609

2 7 0 R

3V3

G N D

2

3

1

Q603

2N7002

R614

1 0 k

USER-LED2

USER_LED3

2

1

D604

LED_gn

R610

2 7 0 R

3V3

G N D

2

3

1

Q604

2N7002

R615

1 0 k

USER-LED3

USER_LED4

2

1

D605

LED_gn

R611

2 7 0 R

3V3

G N D

2

3

1

Q605

2N7002

R616

1 0 k

USER-LED4

12

JP601

JP1X2

12

JP602

JP1X2

12

JP603

JP1X2

Figure 37: Reference design for LEDs

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 81

R801

0 R

3V3

V C C

3

T X D

1

R X D

4

R E F

5

R S

8

C A N H

7

C A N L

6

G N D

2

U800

SN65HVD231

G N D G N D

1 2

JP801

JP1X2

R807

1 2 0 R

R803

1 k

G N D

CAN1_H

CAN1_L

C802

1 0 0 n

G N D

R804

o p e n

CAN1

1

3

2

4

L801

B82789C0513N001

1 2

JP800

JP1X2

5 V

SI800

125mA/63V

3V3

CAN1_TX

CAN1_RX

1

6

2

7

3

8

4

9

5

s

s

BOTTOM

s

s

X801A

DB9M-DUAL

R806

1 k

P E

V C C

3

T X D

1

R X D

4

R E F

5

R S

8

C A N H

7

C A N L

6

G N D

2

U802

SN65HVD231

G N D G N D

1 2

JP803

JP1X2

R817

1 2 0 R

R811

1 k

G N D

CAN2_H

CAN2_L

C811

1 0 0 n

G N D

R812

o p e n

CAN2

1

3

2

4

L803

B82789C0513N001

1 2

JP802

JP1X2

5 V

SI801

125mA/63V

3V3

CAN2_TX

CAN2_RX

R810

0 R

3V3

1

6

2

7

3

8

4

9

5

TOP

X801B

DB9M-DUAL

R816

1 k

Figure 38: Reference design for interface circuits CAN

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 82

G N D

RS232

R X D 1

C1+

1

C1-

3

C2+

4

C2-

5

T2IN

1 0

T1IN

1 1

R1O

1 2

R2O

9

V -

6

V +

2

T2O

7

T1O

1 4

R1I

1 3

R2I

8

V C C

1 6

G N D

1 5

U702

ICL3232EIBZ

C706

1 0 0 n

C709

1 0 0 n

C705

1 0 0 n

C708

1 0 0 n

3V3 G N D

G N D

T X D 1

SIO1_TXD

SIO1_RXD

C710

1 0 0 n

R707

1 0 k

R706

1 0 k

3V3

R708

1 0 0 R

R X D 2

T X D 2

SIO2_TXD

SIO2_RXD

R709

1 0 0 R

1

6

2

7

3

8

4

9

5

s

s

s

s

BOTTOM

X701A

DB9F-DUAL

1

6

2

7

3

8

4

9

5

TOP

X701B

DB9F-DUAL

G N D

P E

R701 1 0 0 R

R702 1 0 0 R

R703 1 0 0 R

R705 1 0 0 R

C701

1 0 0 p

C702

1 0 0 p

C703

1 0 0 p

C704

1 0 0 p

G N D

G N D

RS485

1 2

JP700

JP1X2

5 V

SI700

125mA/63V

1

1

2

2

3

3

4

4

5

5

6

6

X700

C O N 6

R X D 3

T X D 3

RS485_DEN

R E

2

D

4

B

7

R

1

D E

3

A

6

V C C

8

G N D

5

U701

ADM3078

R E

2

D

4

B

7

R

1

D E

3

A

6

V C C

8

G N D

5

U700

ADM3078

G N D

C700

1 0 0 n

C707

1 0 0 n

G N D

G N D

G N D

G N D

R700

1 0 k

R704

1 0 k

G N D

3V3

3V3

3V3

RS485_RXD-_B

RS485_RXD+_A

RS485_TXD-_Z

RS485_TXD+_Y

3V3

R715

1 k

Figure 39: Reference design for interface circuits RS232/485

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 83

Eth_RX-

Eth_TX-

Eth_RX+

Eth_TX+

R712 3 9 0 R

R713 3 9 0 R

C713

1 0 0 n

C712

1 0 0 n

G N D G N D

2V5_EPHY

Link/Act

S p e e d

C711

1 0 0 n

G N D

R710

0 R

R711

0 R

LAN

3V3

T D +

1

T D -

2

R D +

3

T D C T

4

R D C T

5

R D -

6

N C

7

CHS_GND

8

1

1

1

0

Shield

1 4

Shield

1 3

1

2 9

greenyellow

X702

J00-0045NL

P E

Figure 40: Reference design for interface circuit Ethernet

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 84

Keypad

2 1D500 MCL101

2 134

5678

D508

SURGX

2 134

5678

D507

SURGX

G N D

MATRIX_R0

MATRIX_R1

MATRIX_R2

MATRIX_C0

MATRIX_C1

MATRIX_C2

MATRIX_C3

C500

1 n

R503

1 k

C504

1 n

R504

1 k

C506

1 n

R510

1 k

G N D

NVCC_3V3

2 1D501 MCL101

2 1D502 MCL101

2 1D503 MCL101

EXT_MATRIX_C0

EXT_MATRIX_C1

EXT_MATRIX_C2

EXT_MATRIX_C3

MATRIX_R0

MATRIX_R1

MATRIX_R2

MATRIX_R3MATRIX_R3

C507

1 n

R513

1 k

1

2

3

4

5

6

7

8

X500

C O N 8

C516

1 0 0 n

C517

1 0 0 n

C518

1 0 0 n

R523 1 0 k

R525 1 0 k

R524 1 0 k

R520

1 0 k

R521

1 0 k

R522

1 0 k

G N D

5 V SW_S

SW_CLK

SW_DIR

Scroll wheel

NVCC_3V3

3 4

1

U504B

74LVC2G14DBVT

1

G N D

2

V C C

5

6

1

U504A

74LVC2G14DBVT

1

G N D

2

V C C

5

6

1

U503A

74LVC2G14DBVT

3 4

1

U503B

74LVC2G14DBVT

G N D

C515

1 0 0 n

G N D

C514

1 0 0 n

G N D

G N D

G N D

B

1

S

2

S

3

C

4

A

5

Encoder

n c

6

n c

7

S 5 0 0

E33

G N D

NVCC_3V3

Figure 41: Reference design for Matrix Keypad and Scrollwheel

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 85

1

2

3

4

5

6

7

8

1 6

1 5

1 4

1 3

1 2

1 1

1 0

9

S 6 0 9

DIPSW-8

1234

8765

RN602

1 0 k x 4

1234

8765

RN600

1 0 k x 4

G N D

A D 0

1

A D 1

2

A D 2

3

P 0

4

P 1

5

P 2

6

P 3

7

VSS

8

P 4

9

P 5

1 0

P 6

1 1

P 7

1 2

INT

1 3

SCL

1 4

SDA

1 5

V D D

1 6

U600

PCA8574APW

G N D

G N D

Address 3Ah

0111 010

G N D

I2C2_CLK

I2C2_DAT

R625

1 0 k

C607

1 0 0 n

NVCC_3V3

NVCC_3V3

NVCC_3V3

1234

8765

RN603

1 0 k x 4

1234

8765

RN601

1 0 k x 4

G N D

1

1

C

2

4

3

2

4

C

5

8

6

S 6 0 8

KDR16

1

1

C

2

4

3

2

4

C

5

8

6

S 6 1 0

KDR16

A D 0

1

A D 1

2

A D 2

3

P 0

4

P 1

5

P 2

6

P 3

7

VSS

8

P 4

9

P 5

1 0

P 6

1 1

P 7

1 2

INT

1 3

SCL

1 4

SDA

1 5

V D D

1 6

U601

PCA8574APW

G N D

G N D

G N D

Address 39h

0111 001

Left (Up)

Right (Down)

I2C2_CLK

I2C2_DAT

R626

1 0 k

C608

1 0 0 n

NVCC_3V3

NVCC_3V3

NVCC_3V3

Figure 42: Reference design HEX- and DIP-Switches

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 86

Appendix C: Lettering Cards for Matrix Membrane Keypad

Figure 43 contains labeling cards in 1:1 scale for the standard configuration of the foil keyboard used
in Development Kit PLCcore-iMX35. The keyboard assignment can be redefined as needed with the
help of function blocks by means of the PLC-program. By changing the labeling cards inserted on the
back, the labeling can be adjusted flexibly to the actual keyboard assignment.

F1 F2 F3 F4

F5 F6 F7 F8

19

38

57

76

7

2
6

3
3

90

12

7

ESC F9

 F10

19

38

57

76

7

2
6

3
3

90

12

7

Figure 43: Lettering Cards for Matrix Membrane Keypad

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 87

Appendix D: GNU GENERAL PUBLIC LICENSE

The Embedded Linux used on the PLCcore-iMX35 is licensed under GNU General Public License,
version 2. The entire license text is specified below.

The PLC system used and the PLC and C/C++ programs developed by the user are not subject to the
GNU General Public License!

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software -- to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation's software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 88

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on the Program" means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term "modification".) Each licensee is addressed as
"you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work
based on the Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 89

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients'
exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties
to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the Program at all.
For example, if a patent license would not permit royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 90

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If
the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 91

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best
way to achieve this is to make it free software which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it under certain conditions;
 type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than `show w' and
`show c'; they could even be mouse-clicks or menu items -- whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes
passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public License
instead of this License.

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 92

Index

/

/home ... 50
/home/etc/ADCMapping.conf......................... 42
/home/etc/autostart 18, 42
/home/etc/pointercal 51, 52
/home/plc/bin/ set_disp_br.sh 30
/home/plc/bin/plccore-imx35.cfg 30, 37
/home/plc/plcdata/PlcPData.bin..................... 76
/tmp .. 50, 53

A

A/D configuration file 42
A/D default configuration 42
A/D-entry in sysfs .. 41
Accessory .. 14
ADC_MAPPING_FILE 42
ADCMapping.conf ... 42
adduser .. 48
Administration

System Requirements 32
Autostart .. 18, 42

B

Bitrate .. 39
Bitrate CAN0 .. 39
Boot conditions .. 33
Boot configuration .. 42
brightness control for display 30

C

CAN0 ...12, 21, 24
CAN1 ...12, 21, 25

PLC program example 27
CANopen ... 9, 23
CANopen Chip ... 9
CANopen Master ... 9
CE conformity .. 5
CFG File .. 39
COM .. 21
COM0 .. 12, 21
COM1 .. 12, 21
COM2 .. 12
Communication FB .. 19
Communication interfaces

CAN .. 21
COM ... 21
ETH .. 21

ConfigCAN1 ... 27
Configuration

CAN0 .. 38
Command ... 34
PLC .. 36

Configuration Mode 33
Configuration of the A/D 41
Control Elements

Error-LED ... 22

Run/Stop Switch .. 22
Run-LED .. 22

D

date ... 49
deluser .. 48
Development Board

Connections .. 12
Control Elements 13

Development Kit .. 11
df (command) .. 50
Dimension ... 8
DIP Switch .. 38
Display .. 28

brightness control 30
Driver Development Kit 14, 71

E

Embedded Linux ... 9
EMC law .. 5
Error-LED .. 22
ETH0 ... 12, 21

PLC program example 21

F

File System ... 50
Firmware version

Selection .. 42
FTP

Login to the PLCcore-iMX35 46
FTP Client ... 32
FUB ... 9

G

GNU .. 10
GPL ... 86
GUI

Qt ... 9

H

Hex-Encoding Switch 38
HMI_SET_DISPLAY_BRIGHTNESS 30
hwclock ... 49

I

IL 9
iodrvdemo ... 73

K

KOP... 9

L

LCD ... 28
Brightness control 30

Linux.. 9
linuximage ... 55

 System Manual PLCcore-iMX35

 © SYS TEC electronic GmbH 2014 L-1567e_1 Page 93

M

Manuals
Overview .. 6

Master Mode .. 39
Master Mode CAN0 39
Matrix Keyboard .. 28
Matrix Keypad .. 9

N

Node Address .. 39
Node Address CAN0 39

O

OpenPCS ... 9

P

passwd ... 48
Pinout ... 15
PLC program example

CAN1 .. 27
ETH0 .. 21

plccore-imx35.cfg 30, 37, 39, 54
PlcPData.bin .. 76
Predefined User Accounts 44
Process Image

Layout and Addressing 20
Programming ... 19
Pulse outputs ... 31

Q

Qt ... 9

R

ReadSectorTable ... 59
Reference Design .. 78
root.squashfs ... 55
RTC setting .. 49
Run/Stop Switch .. 22

Encoding .. 17
Run-LED .. 22

S

Scrollwheel .. 9, 28
Selecting the firmware version 42
set_disp_br.sh ... 30
Setting the System Time 49
Shared Process Image

Activation .. 59
API Description .. 62
Example ... 67
Overview .. 58
signaling ... 61
Variable Pairs ... 59

ShPImgClntGetDataSect 63
ShPImgClntGetHeader 63
ShPImgClntLockSegment 64
ShPImgClntRelease 63
ShPImgClntSetNewDataSigHandler 63
ShPImgClntSetup ... 62
ShPImgClntSetupReadSectTable 64
ShPImgClntSetupWriteSectTable 64
ShPImgClntUnlockSegment 64
ShPImgClntWriteSectMarkNewData 65
shpimgdemo ... 65
shpimgdemo.tar.gz 65
SO-1119 .. 71
SO-1121 .. 65
Software Update

Linux Image ... 55
PLC Firmware ... 52

SpiderControl 9, 27, 28
ST .. 9
stopplc ... 73
System Start ... 18

T

Telnet
Login to the PLCcore-iMX35 45

Telnet Client .. 32
Terminal Configuration.................................. 34
Terminal Program ... 32
Testing Hardware Connections 73
TFTPD32 .. 55
Touchscreen 9, 28, 51

Calibration ... 51
tShPImgLayoutDscrpt 62
tShPImgSectDscrp .. 62

U

U-Boot Command
BoardID configuration................................ 43
Ethernet Configuration 34
Update Linux Image 55

U-Boot Command Prompt
Activation ... 33
Terminal Configuration 34

UdpRemoteCtrl ... 21
USB-RS232 Adapter Cable 14
User Accounts

Adding and deleting................................... 47
Changing Passwords 48
Predefined ... 44

W

WEB Frontend .. 36
WinSCP .. 46
WriteSectorTable .. 59

System Manual PLCcore-iMX35

© SYS TEC electronic GmbH 2014 L-1567e_1 Page 94

Document: System Manual PLCcore-iMX35

Document number: L-1567e_1, June 2014

How would you improve this manual?

Did you detect any mistakes in this manual? page

Submitted by:

Customer number:

Name:

Company:

Address:

Please return your
suggestions to:

北京：010-5781 5068
上海：021-6728 3703
广州：020-3874 3032
西安：029-8187 3816

详情请通过sales@hkaco.com联系我们

mailto:info@systec-electronic.com

	1 Introduction
	2 Overview / Where to find what?
	3 Product Description
	4 Development Kit PLCcore-iMX35
	4.1 Overview
	4.2 Electric commissioning of the Development Kit PLCcore-iMX35
	4.3 Control elements of the Development Kit PLCcore-iMX35
	4.4 Optional accessory
	4.4.1 USB-RS232 Adapter Cable
	4.4.2 Driver Development Kit (DDK)

	5 Pinout of the PLCcore-iMX35
	6 PLC Functionality of the PLCcore-iMX35
	6.1 Overview
	6.2 System start of the PLCcore-iMX35
	6.3 Programming the PLCcore-iMX35
	6.4 Process image of the PLCcore-iMX35
	6.4.1 Local In- and Outputs
	6.4.2 In- and outputs of user-specific baseboards

	6.5 Communication interfaces
	6.5.1 Serial interfaces
	6.5.2 CAN interfaces
	6.5.3 Ethernet interfaces

	6.6 Control and display elements
	6.6.1 Run/Stop Switch
	6.6.2 Run-LED (green)
	6.6.3 Error-LED (red)

	6.7 Using CANopen for CAN interfaces
	6.7.1 CAN interface CAN0
	6.7.2 CAN interface CAN1

	6.8 Integrated Target Visualization
	6.8.1 LCD and Touchscreen
	6.8.2 Scrollwheel and Matrix Keyboard
	6.8.3 Setting Display Brightness

	6.9 Pulse outputs
	6.9.1 PWM signal generation
	6.9.2 PWM sound generation

	7 Configuration and Administration of the PLCcore-iMX35
	7.1 System requirements and necessary software tools
	7.2 Activation/Deactivation of Linux Autostart
	7.3 Ethernet configuration of the PLCcore-iMX35
	7.4 PLC configuration of the PLCcore-iMX35
	7.4.1 PLC configuration via WEB Frontend
	7.4.2 PLC configuration via control elements of the Development Kit PLCcore-iMX35
	7.4.3 Setup of the configuration file "plccore-imx35.cfg"

	7.5 Configuration of the A/D converter
	7.6 Boot configuration of the PLCcore-iMX35
	7.7 Selecting the appropriate firmware version
	7.8 Predefined user accounts
	7.9 Login to the PLCcore-iMX35
	7.9.1 Login to the command shell
	7.9.2 Login to the FTP server

	7.10 Adding and deleting user accounts
	7.11 How to change the password for user accounts
	7.12 Setting the system time
	7.13 File system of the PLCcore-iMX35
	7.14 Calibration of the Touchscreen
	7.14.1 Automatic Test of Touchscreen Calibration
	7.14.2 Manually calibration of the Touchscreen

	7.15 Software update of the PLCcore-iMX35
	7.15.1 Updating the PLC firmware
	7.15.2 How to update the Linux-Image

	8 Adaption of In-/Outputs and Process Image
	8.1 Data exchange via shared process image
	8.1.1 Overview of the shared process image
	8.1.2 API of the shared process image client
	8.1.3 Creating a user-specific client application
	8.1.4 Example for using the shared process image

	8.2 Driver Development Kit (DDK) for the PLCcore-iMX35
	8.3 Testing the hardware connections

	Index

