
Exor PLC+HMI Development Kit 
User Manual 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

2

 Exor PLC+HMI Development Kit User Manual 

History 

Rev Date Description By 

1.3 22/Jul/2015 - Added section 1.3, briefly explaining how to start building from 
the Docker container.
- Section 3.3: solved an inconsistence between paths in
build instructions.

N.O. 

1.4 4/Apr/2016 - Updated references to new SD card image and JMobile 2.1 
- Chapter 4: add note on supported SD-cards. A capacity of at
least 4GB is required.
- Chapter 6: add note clarifying the purpose of the serial port, 
serial protocols are not supported

N.O. 

1.5 24/May/2016 - Add references to usom01 and usom03 based development kits.
- Chapter 1: add VirtualBox virtual machine references.
- Chapter 3: update to use Yocto 2.1 recipes.

N.O. 

1.6 5/Sep/2016 - Chapter 1: add instructions for installing VirtualBox VM from 
OVA. Installing Vagrant is no more required.
- Chapter 5: add instructions for BSP deploy on eMMC
- Chapter 6: add some more informations, section 6.3 has now
more detailed instructions.
- Chapter 7: add instructions for expansion plugins

N.O. 

1.7 30/Jun/2017 - Chapter 4: update instruction for partitioning the SD-card N.O. 

1.8 27/Sep/2017 - Add references to nsom01 based development kit.
- Chapter 3: update to use Yocto 2.3 recipes

N.O. 

1.9 18/Jun/2018 - Update for release 4.x, Yocto 2.4
- Remove Docker instructions, now unsupported

N.O. 

1.10 5/Aug/2018 - Chapter 5: update instructions N.O. 

Reference 

Cross 
Reference Filename Description 

[1]



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

3

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable 
for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved. Technical data subject to 
change. Copyright © 2018  EXOR International  S.p.A. - All Rights Reserved. 

Document contains 

Author(s) 

Functional Specs 

Usability Specs 

Techical Specs 

Test Procedures 

Technical Documentation 

v User Documentation 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

4

TABLE OF CONTENTS 

1. Title Getting started ................................................................................................................... 6 

1.1 Running the VirtualBox VM ............................................................................................. 6 
1.1.1 Setup a guest-host shared folder ..................................................................... 7 
1.1.2 Configuring the SDK ............................................................................................ 8 
1.1.3 Using QtCreator ................................................................................................... 8 
1.1.4 Compiling the BSP with Yocto .......................................................................... 8 

2 The Sato desktop ....................................................................................................................... 9 

2.1 Network configuration ..................................................................................................... 9 
2.2 Start JMobile from Sato ............................................................................................... 10 

3 Compiling Yocto BSP from scratch. .................................................................................... 11 

3.1 Setup the build environment ........................................................................................ 11 
3.2 Optional customizations ............................................................................................... 11 
3.3 Compiling Yocto BSP .................................................................................................... 12 

3.3.1 Creating the SDK (optional) ............................................................................ 12 

4 BSP deploy on SD-card .......................................................................................................... 13 

4.1 Using a ready image ...................................................................................................... 13 
4.1.1 Under Linux ........................................................................................................ 13 
4.1.2 Under Windows ................................................................................................. 13 

4.2 Using the SD-card installer (Linux users only) .......................................................... 13 
4.3 Manually........................................................................................................................... 14 

5 BSP deploy on eMMC ............................................................................................................. 16 

6 Setup the workspace for building applications ................................................................. 18 

6.1 Cross development environment setup..................................................................... 18 
6.2 Connecting to the device .............................................................................................. 18 
6.3 QtCreator setup .............................................................................................................. 18 

6.3.1 Application deploy ............................................................................................ 22 

7 Using Expansion Plugins ....................................................................................................... 24 

7.1 Use PLCM01 plugin (Canbus) ...................................................................................... 24 
7.1.1 Plugin connection ............................................................................................. 24 
7.1.2 System configuration and Plugin use ........................................................... 24 
7.1.3 Canbus connector (CN2)................................................................................. 25 

7.2 Use PLCM04 module (RS-422/485) ........................................................................... 25 
7.2.1 Plugin connection ............................................................................................. 25 
7.2.2 System configuration and Plugin use ........................................................... 26 
7.2.3 Exaple C code .................................................................................................... 26 
7.2.4 RS485 connector (CN2) .................................................................................. 27 

7.3 Use PLCM05 module (Expansion module) ............................................................... 28 
7.3.1 SPI Plugin connection ...................................................................................... 28 
7.3.2 SPI System configuration and plugin use .................................................... 29 
7.3.3 SPI Example C code ......................................................................................... 29 
7.3.4 CN4 Connector.................................................................................................. 31 

8 Upgrade FPGA firmware ( us02-kit only) ............................................................................ 32 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

5

9 JMobile Portable runtime ...................................................................................................... 33 

9.1 JMobile portable runtime installation ........................................................................ 33 
9.2 JMobile OpenHMI Studio quick start guide .............................................................. 34 

10 CODESYS V3 ............................................................................................................................ 39 

10.1 Enabling CODESYS runtime ......................................................................................... 39 
10.2 Installing CODESYS Devices ........................................................................................ 39 
10.3 Creation of a new PLC project ..................................................................................... 40 
10.4 Communication setup in the CODESYS software ................................................... 40 

11 Accessing PLC from JMobile ............................................................................................... 43 

11.1 Codesys project creation .............................................................................................. 43 
11.2 CDS3 protocol configuration on JMobile .................................................................. 46 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

6

1. Title Getting started

To work with the development kits a Linux operating system with a properly configured build 
environment is required. The simplest way to get started, especially for Windows users, may be using 
one of our development virtual machines. We provide a VirtualBox VM and a Docker container, both 
are preconfigured with: 

 Yocto workspace for building the BSP

 Preinstalled SDKs to start building your own application for the development kit

 QtCreator IDE with preconfigured target toolchains (Qt 5.9)

If you are already working on a Linux machine or you already have a Linux VM you may consider 
configuring yourself the build environment instead. In this case skip this chapter and go to chapter 3 
if you are interested in building the BSP or chapter 6 if you are interested in building your own 
applications for the target.  

1.1 Running the VirtualBox VM 

You can download the Exor’s VirtualBox development VM from here: 

http://download.exorembedded.net:8080/Public/VirtualBoxVMs 

Instructions found on this document are compatible with versions 4.x of the VM. If you are about to 
use a greater version please consider looking for an updated version of this manual. 

The virtual machine comes in the OVA (Open Virtualization Archive) format. To import it on VirtualBox 
got to “File” -> “Import Appliance…”, select the downloaded .ova file and then click “Import”. At this point 
VirtualBox will give you the opportunity to customize the VM, double-click on entries to edit them. 

You will notice there are two network adapters, one is set to work in NAT mode while the second one 
works in bridged mode, the virtual machine will always use the bridged interface if possible and fall 
back to the other only if necessary. Adjust both adapters to work with the real network interface you 
use to have access to internet. Note that if the bridged adapter is not correctly configured you won’t 
be able to resolve the Kit hostname, its IP address has to be used in this case. 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

7

The default amount of RAM is set to 2GB but if you plan working with Yocto we recommend to 
increase it to at least 4GB (suggested 6GB), adjusting the number of CPU cores is also a good idea. 
When you’re done click on “Import”. Once finished importing you will be able to change VM settings 

again. 

The Linux operating system used is based on Ubuntu 16.04, the default user is: 

 username: user
 password: password

To run a command with root privileges you can use sudo, entering the password is not required. 

1.1.1 Setup a guest-host shared folder 

We recommend configuring a shared folder between host and guest, it’s the easiest way to move files 
from and to the VM.  From VirtualBox right-click on Exor’s VM and select “Settings…”. Now go to 
“Shared Folders” and click on the add button to the right.  Configure as follow: 

 Folder Path: choose the host folder to share with the virtual machine
 Folder Name: must be share.

 Read-only: leave unchecked.
 Auto mount: leave unchecked.

 Make Permanent: set checked.



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

8

The chosen folder will be available inside the virtual machine from /home/user/VM-Share, a link to this 
location can be also found on the VM’s desktop. If the VM was already running a restart will be 

required. 

1.1.2 Configuring the SDK 

To reduce the initial weight of the VM the SDK is not shipped with it. Scripts named “Install […] 
SDK.sh” can be found on the desktop, by just executing these with a double-click it’s possible to 
automatically download and install the required SDK files for each device. 

During installation QtCreator will be reconfigured, if found running it will be automatically closed 
during the process. 

1.1.3 Using QtCreator 

The QtCreator IDE is already installed and configured to deploy and debug applications for each 
development kit. When creating a new project make sure to select the kit configuration for your device, 
if not available make sure that the corresponding SDK has been installed using one of the scripts that 
can be found on the desktop. There’s also a “Desktop” kit configuration which can be used to build 
your application and run it on the virtual machine instead of deploying it, useful for fast testing and 
heavy profiling. 

You will find a helloworld sample project in /home/user/helloworld, open it with QtCreator, compile 
it for your platform and press Ctrl+R, a window will pop up in the development kit. 

You can find more details about configuring QtCreator in section 6.3, in particular how to change the 
hostname or IP address of the target device. 

1.1.4 Compiling the BSP with Yocto 

Inside /home/user/exor-yocto-4.0 you will find the preconfigured Yocto workspace for building the 
BSP for your development kit. As we do not update our development virtual machines as often we do 
with our Yocto recipes you may want to update the meta-exor layer before starting the build: 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

9

$ cd /home/user/exor-yocto-4.0/git/meta-exor 

$ git checkout rocko 

$ git pull 

Go to chapter 3 to go ahead compiling the BSP. 

2 The Sato desktop 

The development kit will boot with the default Yocto SATO interface. The machine is 
configured to run as root user and an empty password  

2.1 Network configuration 

By default network configuration is done using a DHCP service. To change this and set a static IP 
click on the Ethernet icon on the right top of the screen and choose  “Preferences”. 

Here, in “Connection Preferences”, choose “Ethernet” from thee Services list and select “MANUAL” 
under “Configuration”. Now you can fill in your network configuration. To do this you can toggle the 
on-screen keyboard or just plug-in a real USB keyboard. Rememer to click on “Apply” when you are 
done. 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

10

2.2  Start JMobile from Sato 

By default, among other applications, a portable version of JMobile Runtime is installed. To launch the 
HMI just click on the JMobile icon you will find in the “Applications” menu in Sato. A demo project is 
already loaded for evaluation purpose. As the Runtime is meant to run by his own on the system the 
Sato user interface will be terminated. 
To close JMobile and return to Sato you can both reboot the board or kill the HMI by issuing the 
following command from an ssh session: 

$ killall xinit 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

11

3 Compiling Yocto BSP from scratch. 

3.1 Setup the build environment 

If you are using Exor’s VirtualBox VM you can skip the first two steps: you will find the exor-yocto-4.0 
folder already in the user’s home ( /home/user/exor-yocto-4.0). 

1. Create a workspace directory structure:

$ mkdir -p exor-yocto-4.0 

$ cd exor-yocto-4.0/ 

2. Get the source code from github repositories:

$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > repo 

$ chmod a+x repo 

$ ./repo init -u https://github.com/ExorEmbedded/exor-bsp-platform -b rocko 

$ ./repo sync 

3. Setup the Yocto environment. From the exor-yocto-4.0 folder execute:

$ source git/yocto-poky/oe-init-build-env build 

You should now find yourself in a newly created “build” directory located in exor-yocto-
4.0/build. The source command above 

4. Configure Yocto by copying the provided sample configuration files. From the the build
directory:

$ cp ../git/meta-exor/conf/bblayers.conf.sample conf/bblayers.conf 

$ cp ../git/meta-exor/conf/local.conf.sample conf/local.conf 

5. Now edit your conf/local.conf and set the MACHINE variable to us01-kit, us02-kit (AlteraKit),
us03-kit or ns01-kit. For example:

MACHINE = "us02-kit" 

You are now ready to build the BSP. 

3.2 Optional customizations 

Here are some customizations you may be interested in: 

 You can force Yocto to build a 32-bit SDK uncommenting the following line in the
build/conf/local.conf file:

#SDKMACHINE ?= "i686" 

 Uncomment following lines in the build/conf/local.conf file to be able to set the number of
threads and CPU cores you want to use for the build process:

#BB_NUMBER_THREADS ?= "4" 

#PARALLEL_MAKE ?= "-j 4" 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

12

3.3 Compiling Yocto BSP 

Make sure to run following commands from your “build” folder: 

1. Compile the bootloader:

$ bitbake bootloader 

2. The xloader (for the us01-kit only):

$ bitbake xloader 

3. The Linux kernel:

$ bitbake virtual/kernel 

4. And finally the rootfs:

$ bitbake core-image-exor-x11 

This will build the classic x11 sato image, the one that can be found in the SD-card included 
with the development kit. 

At the end of these operations you will find build output files in build/tmp/deploy/images/usom0X: 

us0X-kit-uboot.tar.gz Contains the U-Boot raw image 

us0X-kit-xloader.tar.gz Contains the xloader raw image (usom01 only) 

us0X-kit-kernel.tar.gz Contains the kernel zImage and the dtb 

core-image-exor-[…]-us0X-kit.tar.gz Contains the rootfs 

us0X-kit-xloader.tar.gz Contains the xloader raw image (usom01 only) 

us0X-kit-kernel.tar.gz Contains the kernel zImage and the dtb 

core-image-exor-[…]-us0X-kit.tar.gz Contains the rootfs 

3.3.1 Creating the SDK (optional) 

Start the SDK build for the x11 image: 

$ bitbake –c populate_sdk core-image-exor-x11 

The SDK installer can be found in build/tmp/deploy/sdk/exor-evm-qt5-sdk.sh. 



13

4 BSP deploy on SD-card 

This section describes how to prepare a bootable SD-card for the evaluation kit, for this remember 
that only SD-cards with at least 4GB of space are supported. 

Also note that following operations can be dangerous, harm your system or cause loss of data. Do 
not blindly execute these operations if you don’t know what they actually do. 

For Linux users we will assume below the SD-card device is named /dev/sdb and its partitions 
/dev/sdbX, change these to the actual names. 

4.1 Using a ready image 

We provide a fully working 4GB image containing the x11-sato environment to let you start using the 
kit in no time. Note that by using this option, even with a more capable SD, only ~4GB of space will 
be available to the system. 
Download the latest disk image for your evaluation kit: 

US01kit images: http://download.exorembedded.net:8080/Public/usom01/sdcard-images/ 

US02Kit images: http://download.exorembedded.net:8080/Public/usom02/sdcard-images/ 

US03Kit images:  http://download.exorembedded.net:8080/Public/usom03/sdcard-images/ 

US01Kit images:  http://download.exorembedded.net:8080/Public/nsom01/sdcard-images/ 

4.1.1 Under Linux 

From a Linux shell: 

# unzip SDcard-image-4gb.zip 

# dd if=SDcard-image-4gb.img of=/dev/sdb bs=64k 

# sync 

Your SD-card is now ready to be used on the development kit. 

4.1.2 Under Windows 

Download Win32DiskImager from http://sourceforge.net/projects/win32diskimager/. From the 
user interface of Win32DiskImager select the extracted .img image file and the SD-card drive and 
press “Write”. 

4.2 Using the SD-card installer (Linux users only) 

If you want to take advantage of all your SD-card space or you have built by your own some 
components you want to deploy, it’s also possible to use a SD-card installer script: 

ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

14

$ wget http://download.exorembedded.net:8080/Public/utils/mkSDTool/mkSDTool-v4.0.sh -O mkSDTool.sh 

$ sudo chmod +x mkSDTool.sh 

$ sudo ./mkSDTool.sh --machine [us01-x11|us01-wayland|us02|us03|ns01] --device /dev/sdb 

By default the script will deploy on your SD-card all the necessary files by downloading the needed 
components from following locations: 

US01kit: http://download.exorembedded.net:8080/Public/usom01/ 

US02kit: http://download.exorembedded.net:8080/Public/usom02/ 

US03kit: http://download.exorembedded.net:8080/Public/usom03/ 

NS01kit: http://download.exorembedded.net:8080/Public/nsom01/ 

If you want to provide yourself one or more of these components you can take advantage of 
following options supported by the mkSDTool script: 

 --rootfs <path/to/my/rootfs.tar.gz>

 --kernel <path/to/my/kernel.tar.gz>

 --uboot <path/to/my/u-boot.tar.gz>
 --xloader <path/to/my/xloader.tar.gz> (only for us01)

4.3 Manually 

1. Create the SD-card partition layout :

# umount /dev/sdb* 

# SIZE=`fdisk -l /dev/sdb | grep –m1 Disk | awk '{print $5}'` 

# CYLINDERS=$(( $(( $SIZE )) / 255 / 63 /512 )) 

# sfdisk --force -D -H 255 -S 63 -C $CYLINDERS /dev/sdb << EOF 

  1,5 

  6,$(( $CYLINDERS - 10 )) 

  $(( $CYLINDERS - 4 )),,a2 

  EOF 

# mkfs.vfat -n BOOT /dev/sdb1 

# mkfs.ext4 -L ROOT /dev/sdb2 

2. Mount partitions. Execute following operations:

// Mount partitions if not already mounted 

# mkdir /media/BOOT 

# mount /dev/sdb1 /media/BOOT 

# mkdir /media/ROOT 

# mount /dev/sdb2 /media/ROOT 

Now the actual deploy phase depends on the specific board. Make sure to follow the 
appropriate steps: 

// Deploy files to SD-card for us01-Kit 

# mkdir /media/BOOT/boot 

# tar xzvf us01-kit-kernel[…].tar.gz --no-same-owner -C /media/BOOT/boot 

# tar xzvf us01-kit-bootloader.tar.gz --no-same-owner -C /media/BOOT 

# tar xzvf us01-kit-xloader.tar.gz --no-same-owner -C /media/BOOT 

# tar xzvf core-image-exor-[…].tar.gz -C /media/ROOT 

# sync 

// Deploy files to SD-card for us02-kit 

# tar xzvf us02-kit-kernel.tar.gz --no-same-owner -C /media/BOOT 

# tar xzvf core-image-exor-[…].tar.gz -C /media/ROOT 

# tar xzvf us02-kit-uboot.tar.gz 

# dd if=u-boot.img of=/dev/sdb3 bs=64k seek=4 

# sync 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

15

// Deploy files to SD-card for us03-kit 

# mkdir /media/BOOT/boot 

# tar xzvf us03-kit-kernel.tar.gz --no-same-owner -C /media/BOOT/boot 

# tar xzvf core-image-exor-[…].tar.gz -C /media/ROOT 

# tar xzvf us03-kit-uboot.tar.gz 

# dd if=u-boot.imx of=/dev/sdb bs=1k seek=1 

# sync 

// Deploy files to SD-card for ns01-kit 

# mkdir /media/BOOT/boot 

# tar xzvf ns01-kit-kernel-[…].tar.gz --no-same-owner -C /media/BOOT/boot 

# tar xzvf core-image-exor-[…].tar.gz -C /media/ROOT 

# tar xzvf ns01-kit-uboot[…].tar.gz 

# dd if=u-boot.imx of=/dev/sdb bs=1k seek=1 

# sync 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

16

5 BSP deploy on eMMC 

This section describes how to deploy the BSP on eMMC and boot from it. All the kits have the 
possibility to boot without an SD-Card except for the us03-kit. 

On the iMX6Q the location where the bootloader needs to loaded is defined by OTP fuses that on 
the us03-kit are already set to use the SD-Card. Once the bootloader is loaded into ram the roots 
used will still be the one on the eMMC and the SD-card could be removed. For more information 
on OTP fuse programming please refer to NXP processor reference manual ( chapter 5 Fusemap 
and chapter 46 On-Chip OTP Controller ): 

https://www.nxp.com/docs/en/reference-manual/IMX6DQRM.pdf 

To deploy the BSP to the internal eMMC it is required to define the partition layout and then modify 
the bootloader environment in order to inform the u-boot on where to look for all the necessary files. 
Here, for demonstration purposes, we will use the simplest layout, a single ext4 partition. Following 
instructions needs to be executed on the development kit via ssh, it requires you have a working SD-
card and these files available on it: 

 The bootloader image, uboot.img.
 The rootfs, core-image-exor.tar.gz.

 Kernel and dtb or a kernel.tar.gz containing both.

Here are the steps to follow: 

1) Reformat the eMMC device to have a single partition and create the ext4 filesystem. The
eMMC device is defined as /dev/mmcblk1 on all the development kits except for the us02-kit
where it’s /dev/mmcblk0, for this reason the operation is slightly different for the latter.

// Format eMMC and mount rootfs partition for us01-kit, us03-kit and ns01-kit 

# umount /dev/mmcblk1p* 

# SIZE=`fdisk -l /dev/mmcblk1 | grep -m1 Disk | awk '{print $5}'` 

# CYLINDERS=$(( $(( $SIZE )) / 255 / 63 /512 )) 

# echo -e "o\nn\np\n1\n2\n\nw" | fdisk -H 255 -S 63 -C $CYLINDERS /dev/mmcblk1 

# mkfs.ext4 /dev/mmcblk1p1 

# mkdir emmc 

# mount /dev/mmcblk1p1 emmc 

// Format eMMC and mount rootfs partition for us02-kit 

# umount /dev/mmcblk0p* 

# SIZE=`fdisk -l /dev/mmcblk0 | grep -m1 Disk | awk '{print $5}'` 

# CYLINDERS=$(( $(( $SIZE )) / 255 / 63 /512 )) 

# echo -e "o\nn\np\n1\n2\n\nw" | fdisk -H 255 -S 63 -C $CYLINDERS /dev/mmcblk0 

# mkfs.ext4 /dev/mmcblk0p1 

# mkdir emmc 

# mount /dev/mmcblk0p1 emmc 

2) Deploy rootfs and kernel. Make sure at the end emmc/boot contains both a zImage and a dtb.

# tar xzvf core-image-exor.tar.gz -C emmc 

# tar xzvf kernel.tar.gz -C emmc/boot  // Or just copy zImage and dtb to 

emmc/boot # sync 

3) Deploy the bootloader. Again, this is platform dependent.

// Deploy bootloader on eMMC for us01-kit 

# echo 0 > /sys/block/mmcblk1boot0/force_ro 

# dd if=u-boot.img of=/dev/mmcblk1boot0 bs=512 seek=0 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

17

// Deploy bootloader on eMMC for us02-kit 

# echo 0 > /sys/block/mmcblk0boot0/force_ro 

# dd if=u-boot.img of=/dev/mmcblk0boot0 bs=512 seek=0 

// Deploy bootloader on eMMC for us03-kit and ns01-kit 

# dd if=u-boot.imx of=/dev/mmcblk1 bs=512 seek=2 

Now if you remove the SD-card the bootloader written to the eMMC will be executed ( except for the 
us03-kit, see the note at the beginning of this chapter ) but the system won’t boot because the u-
boot will still look for files inside the SD-card. 
To make it work the bootloader environment must be changed. To do this connect to the kit’s serial 
port using a client like putty and while keeping pressed Ctrl+C on the console power off and then on 
the device. A prompt should appear. 

From here execute these commands: 

// U-boot environment changes for us01-kit, us03-kit and ns01-kit 

# setenv mmcboot 'run findfdt; mmc rescan; ext2load mmc 1:1 ${loadaddr} /boot/zImage; 

ext2load mmc 1:1 ${fdtaddr} /boot/${fdtfile}; setenv mmcroot /dev/mmcblk1p1; run 

mmcargs; bootz ${loadaddr} - ${fdtaddr};' 

# saveenv 

// U-boot environment changes for us02-kit 

# setenv mmcroot /dev/mmcblk0p1 

# setenv mmcloadcmd ext2load 

# setenv bootimage /boot/zImage 

# setenv fdtimage /boot/socfpga.dtb 

# setenv mmcload "mmc rescan; ${mmcloadcmd} mmc 0:${mmcloadpart} ${loadaddr} 

${bootimage}; ${mmcloadcmd} mmc 0:${mmcloadpart} ${fdtaddr} ${fdtimage}" 

# saveenv 

To restore the bootloader’s environment and boot again from SD-card stop the machine at the u-boot’s 
prompt again and type: 

# env default -a 

# saveenv 



18

6 Setup the workspace for building applications 

This section describes how to setup a 64bit Linux PC or virtual machine to be able to build applications 
for the target development kit. Our virtual machine and our Docker image are already preconfigured 
and ready to use, these steps can be skipped when using one of these solutions. 

6.1 Cross development environment setup 

Download the latest v4.x SDK from here: 

US01kit: http://download.exorembedded.net:8080/Public/usom01/SDK 

US02kit: http://download.exorembedded.net:8080/Public/usom02/SDK 

US03kit: http://download.exorembedded.net:8080/Public/usom03/SDK 

NS01kit: http://download.exorembedded.net:8080/Public/nsom01/SDK 

Execute the SDK installation file exor-evm-qt5-sdk.sh (requires admin privileges): 

$ cd /opt 

$ sudo chmod a+x ./ exor-evm-qt5-sdk.sh 

$ sudo ./exor-evm-qt5-sdk.sh 

You will be asked for the installation directory, press enter to use the default, /opt/exorintos/2.3.2. 
To setup the cross development environment for the current shell run this command (correct the 
path if you have changed the default installation directory): 

// Environment setup for us01-kit 

$ source /opt/exorintos/2.3.2/environment-setup-cortexa8hf-vfp-neon-poky-linux-gnueabi 

// Environment setup for us02-kit and us03-kit 

$ source /opt/exorintos/2.3.2/environment-setup-cortexa9hf-vfp-neon-poky-linux-gnueabi 

// Environment setup for ns01-kit 

$ source /opt/exorintos/2.3.2/environment-setup-cortexa7hf-vfp-neon-poky-linux-gnueabi 

To build a simple hello world application use the arm cross compiler that should now be reachable 
from your PATH: 

$ arm-poky-linux-gnueabi-gcc main.c -o hello_world 

6.2 Connecting to the device 

On each device a console is active over serial port for debugging purposes. An ssh server is also 
running, useful for having a shell over ethernet or transferring files via sftp. In both cases the username 
to use is root, no password is required. 
If your system has an avahi client installed the kit can also be addressed by its hostname: 

US01kit: exorUS01kit.local 

US02kit: exorUS02kit.local 

US03kit: exorUS03kit.local 

NS01kit: exorNS01kit.local 

6.3 QtCreator setup 

When developing Qt applications it may be usefull to have the Qt IDE preconfigured to use the 
toolchain. You can get latest QtCreator package from DIGIA here:  

ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

19

http://download.qt.io/official_releases/qtcreator/3.3/3.3.2/qt-creator-opensource-linux-

x86-3.3.2.run 

Install it in your machine: 

$ sudo chmod a+x ./qt-creator-opensource-linux-x86-3.3.2.run 

$./qt-creator-opensource-linux-x86-3.3.2.run 

You will find qtcreator installed in ~/qtcreator-3.3.2. Start it: 

$ ~/qtcreator-3.3.2/bin/qtcreator 

We are now going to setup the QtCreator build kit for the target.  
From Tools menu select “Options…” -> “Build & Run”, then follow these steps: 

1) In the “Compilers” tab click on “Add” -> “GCC” -> “C” and select the cross compiler picking it
from the SDK installation folder. If the SDK has been installed in the default location the
correct path is: /opt/exorintos/2.4.2/sysroots/x86_64-pokysdk-
linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-gcc.
Optionally edit “Name” to give a more meaningful name for the entry, select “arm-linux-
generic-elf-32bit” as ABI and finally click “Apply”.

2) From the same tab now click “Add” -> “GCC” -> “C++” and select
/opt/exorintos/2.4.2/sysroots/x86_64-pokysdk-linux/usr/bin/arm-poky-linux-

gnueabi/arm-poky-linux-gnueabi-g++ instead. Again, select “arm-linux-generic-elf-32bit”
as ABI and click “Apply”

3) From “Debuggers” tab press “Add” and select gdb from the same directory. The default
location is: /opt/exorintos/2.4.2/sysroots/x86_64-pokysdk-linux/usr/bin/arm-
poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb .
Optionally edit “Name”, then click “Apply”.

http://download.qt.io/official_releases/qtcreator/3.3/3.3.2/qt-creator-opensource-linux-x86-3.3.2.run
http://download.qt.io/official_releases/qtcreator/3.3/3.3.2/qt-creator-opensource-linux-x86-3.3.2.run


ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

20

4) From “Qt Versions” tab, press “Add..”. The default path to select is:
/opt/exorintos/2.4.2/sysroots/x86_64-pokysdk-linux/usr/bin/qmake. QtCreator
should automatically recognize the qt version selected. Press “Apply”.



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

21

5) This step is required for configuring automatic application deploy on the target.
Move from “Build & Run” section to “Devices”. Click “Add..”, select “Generic Linux Device” and
press “Start Wizard”. Fill in these informations:

 Name: the device name, for example, us01-kit.

 Host name:

US01-kit: exorUS01kit.local 

US02-kit: exorUS02kit.local 

US03-kit: exorUS03kit.local 

NS01-kit: exorNS01kit.local 

 Username: root.

 Authentication type: set to “Password”.
 User’s password: leave empty, no password is needed.

Click “Next” and then “Finish”. Qt Creator will attempt a test connection, if the device is already 
powered on and reachable everything should be ok.  
If for any reason you cannot reach the target by its hostname make sure avahi is installed  on 
your system or edit “Host name” to set the actual board IP address instead. Press on “Test” 
button to check the connection again. 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

22

6) Finally move again to “Build & Run” section, “Kits” tab. Combine all pieces together in a new
kit. Click “Add” and fill in as follows:

 Name: choose a name for the kit.

 Device Type: select “Generic Linux Device”.

 Device: select the device configured in 5).
 Sysroot: if the SDK is installed in the default location, these are the paths to select:

US01-kit: /opt/exorintos/2.4.2/sysroots/cortexa8hf-neon-poky-linux-gnueabi 

US02-kit: /opt/exorintos/2.4.2/sysroots/cortexa9hf-neon-poky-linux-gnueabi 

US03-kit: /opt/exorintos/2.4.2/sysroots/cortexa9hf-neon-poky-linux-gnueabi 

NS01-kit: /opt/exorintos/2.4.2/sysroots/cortexa7hf-neon-poky-linux-gnueabi 

 Compiler: select C and C++ compilers by name as configured in 1) and 2).

 Debugger: select debugger by name as configured in 3).
 Qt version: select qt version added in 4).

6.3.1 Application deploy 

Before starting here, make sure QtCreator has been correctly configured for application deployment 
and that the development kit is reachable. 

1) First, let’s create a dummy Qt project. Select “File” -> “New File or Project…” -> “Qt Widgets
Application” and click “Choose”. Enter a project name, press “Next”. Make sure that in the “Kit
Selection” wizard dialog the SDK kit for the target is selected.

2) Make sure the target kit the one currently in use by checking in the menu on the left shown
below:



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

23

3) Now edit the .pro project file to add these two lines:

target.path = /home/root/ 

INSTALLS += target 

This will define where the application will be installed on the device (/home/root) 

4) Finally press the green “play” button in the menu on the left or use the “Ctrl+R” shortcut.
QtCreator should compile the application and an empty Qt window should appear on the
device.



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

24

7 Using Expansion Plugins 

7.1 Use PLCM01 plugin (Canbus) 

7.1.1 Plugin connection  

The Plcm01 can be plugged in every plugin connector. 
If you connect the Plcm01 on the connector “Plugin 1” the system provide the Can0 interface. 
If you connect the Plcm01 on the connector “Plugin 2” the system provide the Can1 interface. 

7.1.2 System configuration and Plugin use 

Once connected the plugin you can power-up the development kit and wait the booting process. 
With the following system command you can: 

 Set  the can interface

# ip link set can0 up type can bitrate 250000 

 Enable the can interface

# ifconfig can0 up 

 Send can packet

# cansend can0 -i 0x1A5 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

25

 Received can packet

# candump can0 

7.1.3 Canbus connector (CN2) 

Plcm01 is equipped with a standard male DB9 canbus connector. 

7.2 Use PLCM04 module (RS-422/485) 

7.2.1 Plugin connection  

The Plcm04 can be plugged in every kit plugin connector. 
If you connect the Plcm04 on the connector “Plugin 1” the system provide the ttyS1 interface. 
If you connect the Plcm04 on the connector “Plugin 2” the system provide the ttyS2 interface. 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

26

7.2.2 System configuration and Plugin use 

Once connected the plugin you can power-up the development kit and wait the booting process. The 
system is just configured to use this module, and you can read/write on the serial port. 

7.2.3 Exaple C code 

Here a simple example writed in C: 

#include <stdio.h> 

#include <stdlib.h> 

#include <sys/ioctl.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

#include <unistd.h> 

#include <linux/serial.h> 

#include <asm-generic/termbits.h> 

#include <string.h> 

#include <signal.h> 

/* Driver-specific ioctls: */ 

#define TIOCGRS485 0x542E 

#define TIOCSRS485 0x542F 

#define MSG_LENGTH  255 

#define HELLO_WORLD "Hello from Exor uS02 kit\n" 

#define SERIAL_PORT_PLUGIN_1 "/dev/ttyS1" 

#define SERIAL_PORT_PLUGIN_2 "/dev/ttyS2" 

/* 

* SELECT USED PORT

*/

#define SERIAL_PORT SERIAL_PORT_PLUGIN_2

int main(int argc, char const *argv[]) 

{ 

int i, fd, ret=0; 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

27

struct serial_rs485 rs485conf; 

unsigned char b[MSG_LENGTH], c[MSG_LENGTH]; 

fprintf(stdout, "Start!\n"); 

fprintf(stdout, "Open open port %s...!", SERIAL_PORT); 

fd = open(SERIAL_PORT, O_RDWR); 

if (fd < 0) { 

perror ("Open device failure"); 

return -1; 

} 

fprintf(stdout, " done!\n"); 

fprintf(stdout, "Enable RS485 mode..."); 

if (ioctl(fd, TIOCGRS485, &rs485conf) < 0) { 

perror ("ioctl failure"); 

return -2; 

} 

rs485conf.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND; 

if (ioctl(fd, TIOCSRS485, &rs485conf) < 0) { 

perror ("ioctl failure"); 

return -3; 

} 

fprintf(stdout, " done!\n"); 

//Set custom or std baudrate 

struct termios2 tio; 

ioctl(fd, TCGETS2, &tio); 

tio.c_cflag &= ~CBAUD; 

tio.c_cflag |= BOTHER; 

tio.c_ispeed = 115200; 

tio.c_ospeed = 115200; 

ioctl(fd, TCSETS2, &tio); 

write(fd, HELLO_WORLD, strlen(HELLO_WORLD) ); 

while( strncmp(b, "exit", 4) ) 

{ 

fprintf(stdout, "Waiting data on %s \n", SERIAL_PORT);

memset( b, 0, sizeof(b) ); 

ret = read(fd, b, sizeof(b) );

printf("Data received: %s\n", b ); 

strcpy(c, "uS02 send: \t"); 

strcat(c, b); 

write(fd, c, strlen(c) ); 

printf("Data sendend: %s\n", c ); 

} 

fprintf(stdout, "Close fd..."); 

if (close (fd) < 0) { 

perror ("Close device failure"); 

return -4; 

} 

fprintf(stdout, "done!\n"); 

fprintf(stdout, "Stop!\n"); 

return 0; 

} 

7.2.4  RS485 connector (CN2) 

Plcm04 is equipped with a standard male DB9 connector. 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

28

7.3 Use PLCM05 module (Expansion module) 

The Plcm05 is a simple plugin build to simplify the connections, and use various interfaces. 

7.3.1 SPI Plugin connection 

The Plcm05 can be plugged in every development kit plugin connector. 
If you connect the Plcm05 on the connector “Plugin 1” the system provide the spidev0.1 interface. 
If you connect the Plcm05 on the connector “Plugin 2” the system provide the spidev1.1 interface. 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

29

7.3.2 SPI System configuration and plugin use 

Once connected the plugin you can power-up the development kit and wait the booting process. The 
system is just configured to use this module, and you can read/write on the SPI port. 

7.3.3 SPI Example C code 

Here a simple example writed in C: 

#include <stdio.h> 

#include <stdlib.h> 

#include <stdint.h> 

#include <string.h> 

#include <errno.h> 

#include <fcntl.h> 

#include <linux/spi/spidev.h> 

#include <stdio.h> 

#include <sys/ioctl.h> 

#define MSG_LENGTH  2 

#define SPI_PORT_PLUGIN_1 "/dev/spidev0.1" 

#define SPI_PORT_PLUGIN_2 "/dev/spidev1.1" 

/* 

* SELECT USED PORT

*/

#define SPI_PORT SPI_PORT_PLUGIN_1

static void writeSPI(unsigned char buf[2]) 

{ 

int fd; 

unsigned char swap_buf[2]; 

char name[20]; 

struct spi_ioc_transfer xfer[2]; 

sprintf( name, SPI_PORT ); 

//fprintf(stdout,"writeSPI on %s \n ", name ); 

fd = open(name, O_RDWR); 

if (fd < 0) { 

perror("Open"); 

return; 

} 

memset(xfer, 0, sizeof xfer); 

memset(swap_buf, 0, sizeof swap_buf); 

swap_buf[0] = buf[1]; 

swap_buf[1] = buf[0]; 

xfer[0].tx_buf = (unsigned long)swap_buf; 

xfer[0].len = 2; 

ioctl(fd, SPI_IOC_MESSAGE(2), xfer); 

close(fd); 

} 

static void readSPI(unsigned char buf[2]) 

{ 

int fd; 

unsigned char swap_buf[2]; 

char name[20]; 

struct spi_ioc_transfer xfer[2]; 

sprintf( name, SPI_PORT ); 

//fprintf(stdout,"readSPI on %s \n ", name ); 

fd = open(name, O_RDWR); 

if (fd < 0) { 

perror("Open"); 

return; 

} 

memset(xfer, 0, sizeof xfer); 

memset(swap_buf, 0, sizeof swap_buf); 

swap_buf[0] = buf[1]; 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

30

swap_buf[1] = buf[0]; 

xfer[0].tx_buf = (unsigned long)swap_buf; 

xfer[0].len = 1; 

xfer[1].rx_buf = (unsigned long) buf; 

xfer[1].len = 1; 

ioctl(fd, SPI_IOC_MESSAGE(2), xfer); 

close(fd); 

} 

int main(int argc, char const *argv[]) 

{ 

int i; 

unsigned char b[MSG_LENGTH]; 

for(i=0; i<0xFFFF; i++) 

{ 

memset( b, 0, sizeof(b) ); 

b[1] = ((unsigned char) ((i & 0xFF00) >> 8)); 

b[0] = ((unsigned char) ((i & 0x00FF) >> 0)); 

writeSPI( b ); 

usleep(100000); 

} 

exit(0); 

} 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

31

7.3.4 CN4 Connector 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

32

8 Upgrade FPGA firmware ( us02-kit only) 

Power up the uS02 kit and block the boot process during u-boot countdown by pressing CTRL-C. 

Type the following commands: 

# mw.l ff210010 7fe 

# run bootcmd 

Now wait the booting process and in Linux terminal type: 

# dd if=path_to_new_fpga_image.bin of=/dev/mtdblock0 bs=1M 

After few minutes the command ends, for use new FPGA firmware power-off and power-on the 
board. 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

33

9 JMobile Portable runtime 

JMobile is a software suite designed to offer a complete HMI solution with client-server architecture. 
It is made of several software components, integrated into a unique application. JMobile applies the 
latest available technology developed for HMI in industrial automation to every situation where a user 
interface is required. The suite includes commissioning tools, to allow easy maintenance and 
configuration of multiple remote units, and both desktop and runtime engineering software for 
application development. 

The portable version of JMobile is a standard Linux JMobile runtime provided as a chroot-based 
container designed to run under Linux 32bit ARM platforms. 

The portable JMobile runtime is provided for rapid prototyping and evaluation purposes and 
contains a subset (Codesys V3/, Modbus and the internal variables protocol) of the available 
protocols. In particular serial protocols are not supported, the serial port on the evaluation kits is 
only meant for debugging purpose. 

A closer integration with the final target system and access to the complete set of protocols can be 
achieved on demand during the product engineering phase. 

9.1 JMobile portable runtime installation 

By default JMobile in preinstalled on both the standard SD image and the rootfs generated by our 
standard Yocto recipes. In this case a JMobile icon can be seen on the desktop that can be used to 
manually start it. 

The portable can however also be downloaded separately from here: 

http://download.exorembedded.net:8080/Public/OpenHMI/ 

Then to install and run it from ssh follow these steps: 

1. Copy it into the kit.

$ scp jmobile-[…]-portable-devkit.tar.gz root@[hostname]:~ 

2. Connect to the kit:

$ ssh root@[hostname] 

3. Now, from the remote shell, untar the package in a folder with write permissions (e.g. /opt)

$ tar xzpf jmobile-[…]-portable-devkit.tar.gz /opt 

$ rm –rf jmobile-[…]-portable-devkit.tar.gz 

4. Make sure X11 is not running:

# /etc/init.d/xserver-nodm stop 

5. Start JMobile:

# /opt/jmobile_portable/run.sh 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

34

In both cases it’s possible to configure the BSP to automatically start JMobile Runtime at boot: 

1) Remove the script xserver-nodm:

# update-rc.d –f xserver-nodm remove 

2) Add a new script to the init sequence:

# echo “/opt/jmobile_portable/run.sh &” > /etc/init.d/jmobile 

# chmod a+x /etc/init.d/jmobile 

# update-rc.d jmobile defaults 99 

9.2 JMobile OpenHMI Studio quick start guide 

To download a free trial of OpenHMI Suite go to our web page dedicated to development kits on 
exorint.com: 

https://exorint.com/product-category/embedded/dev-kits/ 

Select the device you are working with then, from the “Download” section, download the latest version 
of OpenHMI Suite. After installation, start OpenHMI Studio and create a new project from “File” -> 
“New..”: 

Chose a project name, select a location folder and click on “Next”. Select now the correct target 
corresponding to the board: 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

35

The goal is to create a project simply consisting of an increasing numerical counter. Although at the 
end it won’t do very much, this example project will introduce you to some of the basic mechanics 
JMobile uses to combine protocols, data and visualization. 
To begin with, from the “ProjectView” on the left panel, click on “Protocols”. Here click “+” to add a new 
protocol and select “Variables” as shown in the figure below: 

Use the left panel to move to “Tags”. Press “+” and add an unsignedShort tag named “Tag1” 
representing our counter.  



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

36

Add a numeric field widget to the project’s page by dragging it from the Widget Gallery: 

Double click on the numeric filed and select “Tag1” to bind the widget to the tag’s value: 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

37

Now move to “Scheduler”. Add a HighResolution scheduler with a “StepTag” action to increment the 
counter. Note in the figure below that our tag has been selected for “TagName” under “Action 
Properties”: 

Click on the “Download to Target” icon in the toolbar or simply press Ctrl+D. Make sure the 
development kit is powered on, that you can reach it over the network and that JMobile Runtime is 
running. Select the target from the drop-down list and click “Download” to deploy the project: 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

38

If the JMobile Runtime on the device is found to be an older version the Studio will automatically 
update it before downloading the project.  

The portable version of JMobile uses non standard ports for FTP and HTTP protocols in order to avoid 
conflicts with other services on the host device: 

FTP port: 2525 

HTTP port: 8585 

From the OpenHMI Studio nothing needs to be configured as long the device is selected form the 
target list the correct ports will be used. However when accessing a JM4Web html project page from 
a browser, the http port needs to be specified in the url bar: 

http://<target-IP>:8585 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

39

10  CODESYS V3 

The CODESYS V3 programming software can be downloaded for free from the CODESYS web site at 
www.codesys.com/download.html. 
You will need to register before you can download the software. The version used in this chapter is 
CODESYS v3.5 SP10 Patch 5. 

10.1 Enabling CODESYS runtime 

The Codesys runtime is included inside the JMobile portable but to make it start it’s required to 
enable it first. To do this all it’s required to do is to create a specific file from a ssh shell:  

# touch /opt/jmobile_portable/mnt/data/hmi/qthmi/codesys_auto 

# sync 

This is assuming the portable is installed in /opt/jmobile_portable. After rebooting the device 
Codesys will automatically start with JMobile Runtime. 

10.2 Installing CODESYS Devices 

A device descriptor is required to allow the standard CODESYS V3 to work with the evaluation kits. 
This is provided inside a Codesys .package file that can be found inside OpenHMI Studio installation 
directory: 

C:\Program Files (x86)\Exor\OpenHMI Suite 2.8\CODESYS\V3\CODESYS_JMobile_[…].package 

This file can be imported from the CODESYS programming software. Select “Tools” -> “Package 
Manager…” from the toolbar, the below dialog should appear:  

Click on the “Install…” button and browse for the package file. The choice can be confirmed with 
“Open”.  Finally select “Typical Setup” and continue trough the guided installation until completed. 

http://www.codesys.com/download.html


ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

40

10.3 Creation of a new PLC project 

To create a new CODESYS V3 project select “File” > “New Project” or click on the corresponding  icon 
from the upper tool bar. The “New Project” dialog will be displayed, here, among the available 
templates, select the “Standard project” template. Choose a project name and a location then confirm 
with “OK”. 

There are two different device descriptors for the development kits. The one to choose depends on 
whether the hardware does have an FRAM or not: 

US02-kit, US03-kit, NS01-kit DevKit(FRAM) 

US01-kit, NS01-kit-OpenHMI DevKit(no FRAM) 

To complete the project creation, select the one of the two devices above and the preferred 
programming language of choice. 

10.4 Communication setup in the CODESYS software 

The selection of the target where to download the project must be done from the device 
communication settings tab before proceeding with the download operation.  
Double click on the “Device (DevKit …)” node available in the project tree to display the Device 
properties in the work area, select the “Communication Settings” tab then click on the “Scan Network…” 
button. 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

41

The “Select Device” dialog will be displayed, this dialog lists all the compatible devices available in the 
network, select here your device then press on “OK”. 

In case more panels using CODESYS V3 PLC runtime are present into the network each panel can be 
recognized by the string between square brackets shown just after the device name. In the figure 
below, for example, the string is “0000.392B” for the highlight device. The last part of the string “392B” 
corresponds to the last 2 bytes of the panel IP Address in Hex format so, in this case, the 
corresponding operator panel is the one with IP address xxx.xxx.57.43 as 39Hex corresponds to 57 
Dec and 2B Hex corresponds to 43 Dec. 

The selected device is then listed in the Communication Settings as shown below. the device 
properties are listed on screen. A green dot over the device graphical representation informs that the 
device is correctly recognized and available on the network.  



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

42

Communication with the available devices is established through a Gateway, a default Gateway is 
available, and it is generally not needed to change the standard Gateway settings. For more 
information about the Gateway set-up please refer to CODESYS V3 documentation. 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

43

11  Accessing PLC from JMobile 

JMobile and CODESYS projects discussed in this section are included in the “JMobile_CDS_demo” 
folder from the demo projects package “Demo_Projects.zip”, downloadable from exorembedded.net 
(Products > Development Kits). 

The JMobile Portable contains also a demo version of CODESYS v3 runtime which is started along 
with JMobile runtime. Here is presented an example in wich JMobile will be able to access variable 
values from the PLC. 

11.1 Codesys project creation 

First of all we need to create a simple Codesys program. Assuming a configured project has already 
been created on CODESYS v3 and that the Development kit is properly connected we can write 
these few lines of code inside the PLC_PRG file: 

Now right click on “Application” and select “Add Object > System configuration”: 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

44

Double click on the newly created “Symbol configuration” object and from the opening tab click 
“Build”. Make sure to check at least the PLC_PRG symbols which contains our iCounter variable: 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

45

In the main toolbar click on “Build > Generate code” to create, among other files, an xml file that we 
will later use to import PLC variables on JMobile. 

Now from the main toolbar choose “Online” -> “Login” to deploy the program on the device. If you get 
a warning about an existing program on the PLC click OK to overwrite it with the new one. 

Lastly, to run the program on the PLC, right click on Application and choose “Start”: 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

46

To keep PLC project on CPU also after a reboot, once the device is online, click on 
“Online > Create boot project”. 

11.2 CDS3 protocol configuration on JMobile 

On the OpenHMI Studio create a project for the target Development Kit. Select “Protocols” from the 
Project View on the left, click on the “+” button and select “CODESYS V3 ETH”. 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

47

Configure the protocol as shown in the figure below, then click “OK”. 

Note that with the above configuration JMobile Runtime will look for Codesys connection on the 
localhost. This will work only when the project is running on the Development kit. To connect remotely 

you can enter the Development kit network interface IP instead of 127.0.0.1. 

Now, to import tags from our Codesys project, select “Tags” from the Project View. Here you have to: 

1. Select “CODESYS V3 ETH:prot1” as protocol.



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

48

2. Click on the “Import Tags” button   . Choose “CodeSys3 v1.0”, “Linear” type as tag importer,
click “OK” and then browse and select the xml file you will find in the Codesys project folder
created before.
The name of this file should be something like “<project_name>.Device.Application.xml”.

3. From the lower section of the “Tags” tab select the variable “Application/PLC_PRG/iCounter”

and click on the Import Tag(s)” button  .

Lastly, on a project page, add a numeric label widget, right click on it and choose “Attach to..”. Here 
select the Codesys tag and click “OK”. 



ID No. UM-0012 - REV. 1.10 

©2018 EXOR Embedded S.r.l. - Subject to change without notice 

49

Once you have downloaded the project to the Development  kit, if the PLC program is running, you 
should see the Codesys “iCounter” variable being incremented. 

hkaco.com 关注我们

需要详细信息？请通过sales@hkaco.com联系我们 | 电话: 400-999-3848
办事处：广州 | 北京 | 上海 | 深圳 | 西安 | 武汉 | 成都 | 沈阳 | 香港 | 台湾 | 美国 


